Spelling suggestions: "subject:"[een] EQUITABLE TOTAL COLORING"" "subject:"[enn] EQUITABLE TOTAL COLORING""
1 |
[en] A STUDY ON EDGE AND TOTAL COLORING OF GRAPHS / [pt] UM ESTUDO SOBRE COLORAÇÃO DE ARESTAS E COLORAÇÃO TOTAL DE GRAFOSANDERSON GOMES DA SILVA 14 January 2019 (has links)
[pt] Uma coloração de arestas é a atribuição de cores às arestas de um grafo, de modo que arestas adjacentes não recebam a mesma cor. O menor inteiro positivo para o qual um grafo admite uma coloração de arestas
é dito seu índice cromático. Fizemos revisão bibliográfica dos principais resultados conhecidos nessa área. Uma coloração total, por sua vez, é a aplicação de cores aos vértices e arestas de um grafo de modo que elementos adjacentes ou incidentes recebam cores distintas. O número cromático total de um grafo é o menor inteiro positivo para o qual o grafo possui coloração total. Dada uma coloração total, se a diferença entre as cardinalidades de quaisquer duas classes de cor for no máximo um, então dizemos que
a coloração é equilibrada e o menor número inteiro positivo que satisfaz essa condição é dito o número cromático total equilibrado do grafo. Para tal valor, Wang (2002) conjecturou um limite superior. Um grafo multipartido completo balanceado é aquele em que o conjunto de vértices pode ser particionado em conjuntos independentes com a mesma quantidade de vértices, sendo adjacentes quaisquer dois vértices de diferentes partes da partição. Determinamos o número cromático total equilibrado dos grafos multipartidos completos balanceados, contribuindo, desta forma, com novos resultados na área de coloração de grafos. / [en] An edge coloring is the assignment of colors to the edges of a graph, so that adjacent edges do not receive the same color. The smallest positive integer for which a graph admits an edge coloring is said to be its chromatic index. We did a literature review of the main known results of this area. A total coloring, in turn, is the application of colors to the vertices and edges of a graph so that adjacent or incident elements receive distinct colors. The total chromatic number of a graph is the least positive integer for
which the graph has a total coloring.Given a total coloring, if the difference between the cardinality of any two color classes is at most one, then we say that the coloring is equitable and the smallest positive integer that satisfies this condition is said to be the graph s equitable total chromatic number. For such value, Wang (2002) conjectured an upper bound. A complete multipartite balanced graph is the one in which the set of vertices can be partitioned into independent sets with the same quantity of vertices, being
adjacent any two vertices of different parts of the partition. We determine the equitable total chromatic number of complete multipartite graphs, contributing, therefore, with new results in the area of graph coloring.
|
Page generated in 0.0277 seconds