• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3918
  • 980
  • 630
  • 338
  • 202
  • 130
  • 105
  • 87
  • 43
  • 40
  • 27
  • 27
  • 27
  • 27
  • 27
  • Tagged with
  • 7979
  • 1206
  • 806
  • 776
  • 765
  • 627
  • 613
  • 540
  • 463
  • 423
  • 410
  • 381
  • 357
  • 328
  • 318
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Evolution and speciation in the dung beetle genus Temnoplectron Westwood from the Australian wet tropics

Bell, K. L. Unknown Date (has links)
No description available.
282

Evolutionary analysis of the relaxin peptide family and their receptors

Wilkinson, Tracey Nicole January 2006 (has links) (PDF)
The relaxin-like peptide family consists of relaxin-1, 2 and 3, and the insulin-like peptides (INSL)-3, 4, 5 and 6. The evolution of this family has been controversial; points of contention include the existence of an invertebrate relaxin and the absence of a ruminant relaxin. Using the known members of the relaxin peptide family, all available vertebrate and invertebrate genomes were searched for relaxin peptide sequences. Contrary to previous reports an invertebrate relaxin was not found; sequence similarity searches indicate the family emerged during early vertebrate evolution. Phylogenetic analyses revealed the presence of potential relaxin-3, relaxin and INSL5 homologs in fish; dating their emergence far earlier than previously believed. Furthermore, estimates of mutation rates suggested that the expansion of the family (i.e. the emergence of INSL6, INSL4 and relaxin-1) during mammalia was driven by positive Darwinian selection. In contrast, relaxin-3 is constrained by strong purifying selection, implying a highly conserved function. (For complete abstract open document)
283

The role of juvenile foraging ecology and growth in the evolution of life history strategies for southern elephant seals

Field, IC January 2005 (has links) (PDF)
In highly dynamic and unpredictable environments such as the Southern Ocean, species that have evolved behaviours that reduce the effects of intra-specific competition may have a selective advantage. This is particularly true when juveniles face disadvantages when foraging due to morphological or physiological limitation, such as in the case of many marine mammals. Southern elephant seals (Mirounga leonina) are a major consumer of biomass in the Southern Ocean with a global distribution. Recent modelling of the Macquarie Island population concluded that juvenile survival is a key parameter in influencing the rates of population change and as an important demographic component of the population. Resource limitation has been suggested as the primary reason for the change in numbers of these populations and this coupled with the importance of juvenile rates of survival influencing population change may provide some insight into explaining any reduction in juvenile survival. Until now, little has been known about these juveniles, ontogenetic and intra-specific differences in life history and foraging ecology have been suggested but not investigated. During this juvenile stage individuals undergo many morphometric and physiological changes as they develop toward maturity. Therefore, it would seem likely that studying the foraging ecology and growth and development patterns of this demographic group may show the proximate processes in affecting population dynamics. This study has followed juvenile seals as they grow and develop rapidly toward adulthood observing changes in foraging areas or strategies and associated changes in prey availability, differences in the seasonal availability of prey, changes in morphology and physiology for growth, maintenance or provisioning toward adulthood. In this thesis I present data for: 1) Anaesthesia for safe handling - I assessed the effects of variation in body condition and age at on the characteristics of anaesthesia, including induction time and dose-specific recovery rate which has increased the control over immobilisation level and duration, and reduces handling times for wild pinnipeds. 2) Foraging range and 3) Habitat use of the Southern Ocean -I tracked the at-sea movements of juvenile southern elephant seals using locations derived from recorded light levels. 4) Diet - I describe intra-specific dietary differences in prey composition and size. 5) Metabolic estimates and energy use and 6) Growth and body condition changes - I examined changes in mass and body composition of juvenile southern elephant seals during and between their annual moult and mid-year haul-outs. General discussion - These key ecological areas of an important predator has increased our understanding of the evolutionary and ecological interactions that influence the population dynamics of southern elephant seals at Macquarie Island and the structure of the Southern Ocean ecosystem.
284

Geochronology of weathering and landscape evolution, Hamersley Iron Province, Australia

Heim, Jonathan Andrew Unknown Date (has links)
Weathering geochronology permits delimiting the ages of weathering profiles, determining rates of weathering and landscape evolution and inferring palaeoclimatic and environmental conditions that control the surficial evolution of continents. It also provides insights into the timing and rates of supergene enrichment of metal and precious mineral deposits. Until recently, weathering geochronology was primarily based on K-Ar and 40Ar/39Ar dating of supergene minerals. Recent advances by U-Th series dating of pedogenic carbonate (Sharp et aI., 2003), in situ U-Th series dating of iron hydroxides (Bernal et aI., 2006), U-Pb SHRIMP dating of opals (Nemchin et aI., 2006), and (U-Th)/He and 4HePHe analysis of supergene goethite (Shuster et aI., 2005) expand the number of minerals and the time range where weathering geochronology can be applied. Weathering profiles blanket more than one third of the Australian continent and are purportedly among the oldest weathering profiles on earth. Unravelling the history of weathering and landscape evolution in these areas requires techniques capable of dating supergene minerals at all time scales, but particularly at the > I Ma scale. Currently, the K-Ar, U-Pb, and U-Th/He methods are the only techniques suitable to directly date supergene minerals on such time-scales. In this study, I show how the combination of 4°ArP9Ar and (U-Th)/He geochronology can be used to unravel the weathering and landscape evolution history of continents. The application of radiogenic isotope-dating techniques and the proper interpretation of geochronological results require understanding of the dated mineralogy and the presence of potentially contaminating phases. The successful application of 40ArP9Ar weathering geochronology was made possible through detailed understanding of the hollandite-group Mn oxide and alunite-group sulfate crystal chemistry and mineral physics. Similarly, in this study, I have refined the application of (U-Th)/He dating of goethite. The successful application of this technique relies on the identification and selection of suitable goethitebearing samples in the field; the characterization of mineral paragenesis by optical microscopy; the determination of fine-scale mineral chemistry and paragenesis through electron microscopy and microprobe analysis; the determination of physico-chemical properties (mineral structure, crystallinity) of the various types of supergene goethite through x-ray (bench-top and synchrotron) diffraction techniques; and application to noble gas diffusion experiments in ultra-high vacuum techniques to quantify the crystallochemical controls on the helium (natural radiogenic 4He and artificial spallogenic 3He) diffusion properties and retentivity of goethite. Finally, to test the reliability of the (U-Th)/He dating method, I apply the methodology to weathering profiles in a range of geological environments where stratigraphic and paragenetic relationships provide tight constraints on the possible history of mineral precipitation. For the applied component of this study, I (with a group of collaborators) chose the Hamersley Province as the key study site for the application of combined 40ArP9Ar and (UTh)/ He geochronology, for several reasons: the Hamersley Province is one of the longest lived landscapes on Earth and is extensively blanketed by thick weathering profiles that contain a plethora of crystalline goethite suitable for (U-Th)/He dating; the goethite in these weathering profiles coexists with K-bearing Mn oxides suitable for 4°Ar/39Ar dating; and mining operations provide exposure and access to near complete weathering profiles, enabling the sampling of goethite and Mn oxides for geochronology. Deep (50 to 100 metres on average and up to 400 metres) lateritic weathering profiles in the Hamersley Province outcrop over 80, 000 km2 on ridges and plateaus, ranging in height from II 00 m to 400 m. These lateritic weathering profiles are developed on Archaean banded-iron formation and host some of the world's largest iron ore deposits. Some authors have proposed that the lateritic weathering profiles represent the remnants of a continuous Mesozoic land surface now partially eroded. Surrounding the plateaus and ridges, ferruginized detrital sediments on valley slopes and floors and ferruginized detritus in paleochannel deposits (channel iron deposits or CID), also hosting high-grade iron ore, reveal evidence of widespread erosion and re-deposition of former weathering profiles. They also display evidence of post-depositional weathering and ferruginization, suggesting a complex interplay between weathering and erosion during landscape evolution in the region. 4°ArP9Ar dating of 204 grains of supergene Mn oxides (mostly cryptomelane and hollandite) extracted from 70 samples from seven distinct weathering profiles at 7 field sites, up to 300 kilometres apart, yield precipitation ages ranging from 63.4 ± 0.9 to 1.5 ± 0.2 Ma. When combined with previous unpublished 40ArP9Ar results, ranging from 81.1 ± 0.4 to 11.6 ± 0.3 Ma, the geochronology indicates a prolonged (Late Cretaceous to Recent) and episodic weathering record for the Hamersley Province, where periods of intense dissolution-reprecipitation of Mn oxides (51-41, 24-16 Ma) alternate with periods of relatively subdued mineral precipitation. The intense periods of mineral dissolution-precipitation correlate with maj or global climatic events. The goethite precipitation record confirms the longevity of weathering processes identified in the Mn oxide record. (U-Th)/He dating of 85 grains of goethite from 39 samples (20 hand specimens) from six sampling sites (5 sites sampled for 4°Ar/39Ar geochronology) yield reliable precipitation ages, ranging from 84.3 ± 12.2 to 3.0 ± 0.2 Ma. The deep (~100 m) lateritic weathering profile overlying banded iron-formation in the Hamersley Province record weathering process already ongoing in Late Cretaceous and spanning the Paleogene and Neogene. The geochronological results also reveal that the lateritic profiles in the Metawandy Valley (50-2 Ma), Mt Wall (60-30 Ma), Mt Tom Price (81-12 Ma) and Marandoo (52-12 Ma) regions had already reached great depths (70-100 m on average and up to 220 m below present land surfaces) by at least the Late Cretaceous or Early Paleogene. The results also show that weathering has been less effective at promoting the advancement of the weathering front during the Late Paleogene and Neogene. The geochronological results for authigenic supergene Mn-oxides and goethite III ferruginized detrital deposits (canga) in the Rhodes Ridge (41 to 7 Ma) area indicate that former land surfaces blanketing the Hamersley Province plateaus and ridges had been partially or nearly completely eroded by at least the Eocene. Geochronological results for the channel iron deposits reveal a similar scenario. 40ArP9Ar dating of Mn oxides (ranging from 32 to 17 Ma at the Lynn Peak Cm) and (U-Th)/He dating of goethite (ranging from 18 to 5 Ma at the Yandicoogina cm, and from 43 to 28 Ma at the Lynn Peak Cm) in late-stage authigenic cements indicate that the channel iron deposits had completely aggraded with ironrich sediments and were undergoing goethite cementation (ferruginization) by, at least, the Late Middle Eocene. Age versus depth distributions in channel iron deposits indicate that ferruginization of the channel sediments becomes progressively younger with depth in the profile, strongly suggesting that ferruginization occurred at the groundwater-atmosphere interface and the process moved downwards through progressive deepening of the water table. I interpret that this process was driven by the overall transition towards aridity of northwestern Australia in the Neogene. Excursion towards more humid climates in the Early-Middle Miocene has promoted the partial dissolution and secondary precipitation of channel cements in the upper parts of the profiles or near surface environments. Correlation between the weathering record and independent climatic and environmental indicators suggests that the formation of lateritic weathering profiles on banded iron-formation can be linked to warm and humid climatic conditions in the Late Cretaceous and Early Paleogene, when Australia lay with Gondwana at low latitudes. Climate change at the end of Paleogene, a consequence of the break-up of Gondwana and Australia's accelerated drift away from Antarctica, is identified at this stage as the causal event that promoted the erosion and deposition of former weathering profiles and the formation of extensive detrital and paleochannel deposits. Amid the Neogene aridification of northwestern Australia, a brief excursion towards more humid climatic conditions at the Early Miocene has promoted extensive re-crystallization of supergene minerals in weathering profiles throughout the region. The Neogene aridification of northwestern Australia may also explain the decelerating rates of weathering and weathering front propagation in lateritic profiles of this regIOn. A comparison of the weathering record obtained for the Hamersley Province with the results of similar studies from the Carajas and Quadrilatero Ferrifero Regions, Brazil, and Burkina Faso and Gabon, West Africa, reveals that intense weathering and enrichment ofMn oxides within the weathering profiles occurred at the 50-40 Ma interval, but particularly at 47-45 Ma. The remarkably similar weathering history obtained for the three southern Hemisphere continents suggests that weathering in these ancient landscapes may be controlled by global (greenhouse) climatic conditions.
285

Molecular evolution of neuropeptide Y receptors in vertebrates /

Salaneck, Erik, January 1900 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2001. / Härtill 4 uppsatser.
286

Evolution in the genus Gossypium with supplemantary observations on other genera.

Zaid bin Abdul Kadir. January 1973 (has links) (PDF)
Thesis (Ph.D. 1974) from the Dept. of Botany, University of Adelaide.
287

Models and estimation for phylogenetic trees /

Ababneh, Faisal. January 2006 (has links)
Thesis (Ph. D.)--School of Mathematics and Statistics, Faculty of Science, University of Sydney, 2006. / Bibliography: leaves 167-171.
288

Analyse der gemeinsamen Grundlagen von Genomstruktur und genetischer Variabilität des Menschen

Schmegner, Claudia, January 2006 (has links)
Ulm, Univ. Diss., 2006.
289

Gerichtete Evolution und Charakterisierung einer thermostabilen DNA-Polymerase mit erhöhter Akzeptanz für geschädigte DNA

Glöckner, Christian. January 2008 (has links)
Konstanz, Univ., Diss., 2008.
290

Evolution and phylogeography of the North American genus Boechera (Brassicaceae)and the evolution of Apomixis

Kiefer, Christiane. January 2008 (has links)
Heidelberg, Univ., 2008.

Page generated in 0.0332 seconds