• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 5
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 34
  • 20
  • 16
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR SOLVING TWO-DIMENSIONAL ACOUSTIC WAVE PROBLEMS

BAPAT, MILIND SHRIKANT January 2006 (has links)
No description available.
2

Characterizing Scattering by 3-D Arbitrarily Shaped Homogeneous Dielectric Objects Using Fast Multipole Method

Li, Jian-Ying, Li, Le-Wei 01 1900 (has links)
Electromagnetic scattering by 3-D arbitrarily shaped homogeneous dielectric objects is characterized. In the analysis, the method of moments is first employed to solve the combined field integral equation for scattering properties of these three-dimensional homogeneous dielectric objects of arbitrary shape. The fast multipole method, and the multi-level fast multipole algorithm are implemented into our codes for matrix-vector manipulations. Specifically, four proposals are made and discussed to increase convergence and accuracy of iterative procedures (conjugate gradient method). Numerical results are obtained using various methods and compared to each other. / Singapore-MIT Alliance (SMA)
3

Novel tree-based algorithms for computational electromagnetics

Aronsson, Jonatan January 2011 (has links)
Tree-based methods have wide applications for solving large-scale problems in electromagnetics, astrophysics, quantum chemistry, fluid mechanics, acoustics, and many more areas. This thesis focuses on their applicability for solving large-scale problems in electromagnetics. The Barnes-Hut (BH) algorithm and the Fast Multipole Method (FMM) are introduced along with a survey of important previous work. The required theory for applying those methods to problems in electromagnetics is presented with particular emphasis on the capacitance extraction problem and broadband full-wave scattering. A novel single source approximation is introduced for approximating clusters of electrostatic sources in multi-layered media. The approximation is derived by matching the spectra of the field in the vicinity of the stationary phase point. Combined with the BH algorithm, a new algorithm is shown to be an efficient method for evaluating electrostatic fields in multilayered media. Specifically, the new BH algorithm is well suited for fast capacitance extraction. The BH algorithm is also adapted to the scalar Helmholtz kernel by using the same methodology to derive an accurate single source approximation. The result is a fast algorithm that is suitable for accelerating the solution of the Electric Field Integral Equation (EFIE) for electrically small structures. Finally, a new version of FMM is presented that is stable and efficient from the low frequency regime to mid-range frequencies. By applying analytical derivatives to the field expansions at the observation points, the proposed method can rapidly evaluate vectorial kernels that arise in the FMM-accelerated solution of EFIE, the Magnetic Field Integral Equation (MFIE), and the Combined Field Integral Equation (CFIE).
4

Novel tree-based algorithms for computational electromagnetics

Aronsson, Jonatan January 2011 (has links)
Tree-based methods have wide applications for solving large-scale problems in electromagnetics, astrophysics, quantum chemistry, fluid mechanics, acoustics, and many more areas. This thesis focuses on their applicability for solving large-scale problems in electromagnetics. The Barnes-Hut (BH) algorithm and the Fast Multipole Method (FMM) are introduced along with a survey of important previous work. The required theory for applying those methods to problems in electromagnetics is presented with particular emphasis on the capacitance extraction problem and broadband full-wave scattering. A novel single source approximation is introduced for approximating clusters of electrostatic sources in multi-layered media. The approximation is derived by matching the spectra of the field in the vicinity of the stationary phase point. Combined with the BH algorithm, a new algorithm is shown to be an efficient method for evaluating electrostatic fields in multilayered media. Specifically, the new BH algorithm is well suited for fast capacitance extraction. The BH algorithm is also adapted to the scalar Helmholtz kernel by using the same methodology to derive an accurate single source approximation. The result is a fast algorithm that is suitable for accelerating the solution of the Electric Field Integral Equation (EFIE) for electrically small structures. Finally, a new version of FMM is presented that is stable and efficient from the low frequency regime to mid-range frequencies. By applying analytical derivatives to the field expansions at the observation points, the proposed method can rapidly evaluate vectorial kernels that arise in the FMM-accelerated solution of EFIE, the Magnetic Field Integral Equation (MFIE), and the Combined Field Integral Equation (CFIE).
5

A Fast Multipole Boundary Element Method for Solving Two-dimensional Thermoelasticity Problems

Li, Yuxiang 28 October 2014 (has links)
No description available.
6

Coloides carregados ou porosos: estudos das propriedades hidrodinâmicas e eletrocinéticas com o método Lattice Boltzmann / Charged or porous colloids: studies of studies of hydrodynamic and electrokinetic properties with Lattice Boltzmann Method

Rodrigues Junior, Wagner Gomes 02 September 2016 (has links)
Este trabalho teve como motivação experimental problemas surgidos nos laboratórios de biofísica do IF-USP em medidas com vesículas carregadas, que podem ser usadas para estudar membranas biológicas. As propriedades destes sistemas, e, em particular, como função da temperatura, só podem ser investigadas indiretamente. A interpretação dos resultados depende de uma modelagem coerente. Entre as exigências de coerência, estariam a justificativa para a discrepância entre resultados para as medidas de raio dos macroíons lipídicos, no intervalo de temperaturas próximas à transição gelfluido, obtidas por técnicas experimentais diferentes (Static Light Scattering (SLS) e Dynamic Light Scattering (DLS)) e as anomalias no calor específico, na condutividade e na mobilidade eletroforética da solução coloidal iônica, no mesmo intervalo de temperatura. Estudos anteriores a este trabalho sugeriam a formação de poros em tais vesículas, como tentativa de explicar diferenças nos resultados das técnicas de espalhamento, bem como o papel da análise do equilíbrio termodinâmico da dissociação sobre as propriedades térmicas e termoelétricas. Para interpretar e dar coerência aos diversos resultados experimentais existentes, é necessário desenvolver modelos teóricos. É objetivo deste trabalho desenvolver técnicas de tratamento de modelos teóricos quanto às propriedades de transporte. Assim, neste estudo utilizamos o método computacional conhecido como ``Lattice Boltzmann\'\' (LBM) procurando focar no estudo de propriedades de meios porosos e de coloides carregados. Para melhor compreensão dos limites e justificativas do modelo, realizamos um breve estudo sobre a equação de Boltzmann e suas propriedades. Assim, depois de desenvolver um código em linguagem C para o LBM, e testá-lo com resultados conhecidos, utilizamos o ``Lattice Boltzmann\'\' para determinar o coeficiente de arrasto de esferas e cascas esféricas porosas, comparando com resultados analíticos e experimentais conhecidos. Para o estudo de sistemas coloidais carregados, acoplamos o ``Lattice Boltzmann`` a outra técnica computacional, ``Fast Multipole Method\'\' (FMM), para poder estudar efeitos elétricos e hidrodinâmicos associados aos coloides com carga. Foram feitas simulações de fluxo eletrosmótico e eletrólitos entre placas carregadas que apresentaram resultados animadores ao comparar com resultados analíticos, constatando que FMM pode ser uma alternativa à resolução da equação de Laplace para determinar o potencial eletrostático em simulações com LBM. Além disso foram feitas simulações de mobilidade eletroforética em meios sem sal, que mostram que o código pode ser utilizado como ferramenta na busca da solução para as dúvidas surgidas no estudo de vesículas carregadas. / This study was inspired by the problem of interpreting experimental results arising in the Biophysics Laboratory of the Institute of Physics - USP. Different techniques are used to investigate charged vesicles that are used as an experimental model for biological membranes. Careful measurements of vesicle radius, in the range of gel-fluid transition temperature, through different experimental techniques, namely Static and Dynamic Light Scattering (SLS and DLS) led to very different results. Previous studies of the same system suggested the formation of pores in such vesicles. In addition, specific heat and conductivity measurements on charged vesicles displayed an anomalous region, in the range of gel-fluid transition temperature, as compared to neutral vesicles. In an attempt to make progress in the understanding of the above problems, we use the computational method known as Lattice Boltzmann Method (LBM) seeking to focus on the study of transport properties of porous and charged colloids. To better understand the limits of the model and justifications, we make a brief study of the Boltzmann equation and its properties. Thus, after developing a code in $C$ language for LBM, and testing it with known results, we use the Lattice Boltzmann method to obtain the drag coefficient of spheres and porous spherical shells. We compare our results with analytical and experimental results from the literature and obtain good fitting. For the study of charged colloidal systems, we associate the Lattice Boltzmann method with a computational technique for the calculation of the eletrostatic potential: the Fast Multipole Method (FMM), which enables us to study electrical and hydrodynamic effects on charged colloids. We simulate electroosmotic flow and electrolytes between charged plates, with encouraging results in the comparison with known analytical result. This suggests that FMM may be a good alternative to resolution of the Laplace equation to determine the electrostatic potential simulations with LBM. Moreover we have obtained the electrophoretic mobility for charged colloids in saltless solutions, which makes our code a possible instrument for the interpretation of experimental results on charged vesicles.
7

[en] APPLICATION OF FAST MULTIPOLE TECHNIQUES IN THE BOUNDARY ELEMENT METHODS / [pt] APLICAÇÃO DE TÉCNICAS DE FAST MULTIPOLE NOS MÉTODOS DE ELEMENTOS DE CONTORNO

LARISSA SIMOES NOVELINO 19 February 2019 (has links)
[pt] Este trabalho visa à implementação de um programa de elementos de contorno para problemas com milhões de graus de liberdade. Isto é obtido com a implementação do Método Fast Multipole (FMM), que pode reduzir o número de operações, para a solução de um problema com N graus de liberdade, de O(N(2)) para O(NlogN) ou O(N). O uso de memória também é reduzido, por não haver o armazenamento de matrizes de grandes dimensões como no caso de outros métodos numéricos. A implementação proposta é baseada em um desenvolvimento consistente do convencional, Método de colocação dos elementos de contorno (BEM) – com conceitos provenientes do Hibrido BEM – para problemas de potencial e elasticidade de larga escala em 2D e 3D. A formulação é especialmente vantajosa para problemas de topologia complicada ou que requerem soluções fundamentais complicadas. A implementação apresentada, usa um esquema para expansões de soluções fundamentais genéricas em torno de níveis hierárquicos de polos campo e fonte, tornando o FMM diretamente aplicável para diferentes soluções fundamentais. A árvore hierárquica dos polos é construída a partir de um conceito topológico de superelementos dentro de superelementos. A formulação é inicialmente acessada e validada em termos de um problema de potencial 2D. Como resolvedores iterativos não são necessários neste estágio inicial de simulação numérica, podese acessar a eficiência relativa à implementação do FMM. / [en] This work aims to present an implementation of a boundary element solver for problems with millions of degrees of freedom. This is achieved through a Fast Multipole Method (FMM) implementation, which can lower the number of operations for solving a problem, with N degrees of freedom, from O(N(2)) to O(NlogN) or O(N). The memory usage is also very small, as there is no need to store large matrixes such as required by other numerical methods. The proposed implementations are based on a consistent development of the conventional, collocation boundary element method (BEM) - with concepts taken from the variationally-based hybrid BEM - for large-scale 2D and 3D problems of potential and elasticity. The formulation is especially advantageous for problems of complicated topology or requiring complicated fundamental solutions. The FMM implementation presented in this work uses a scheme for expansions of a generic fundamental solution about hierarchical levels of source and field poles. This makes the FMM directly applicable to different kinds of fundamental solutions. The hierarchical tree of poles is built upon a topological concept of superelements inside superelements. The formulation is initially assessed and validated in terms of a simple 2D potential problem. Since iterative solvers are not required in this first step of numerical simulations, an isolated efficiency assessment of the implemented fast multipole technique is possible.
8

Fast numerical methods for high frequency wave scattering

Tran, Khoa Dang 03 July 2012 (has links)
Computer simulation of wave propagation is an active research area as wave phenomena are prevalent in many applications. Examples include wireless communication, radar cross section, underwater acoustics, and seismology. For high frequency waves, this is a challenging multiscale problem, where the small scale is given by the wavelength while the large scale corresponds to the overall size of the computational domain. Research into wave equation modeling can be divided into two regimes: time domain and frequency domain. In each regime, there are two further popular research directions for the numerical simulation of the scattered wave. One relies on direct discretization of the wave equation as a hyperbolic partial differential equation in the full physical domain. The other direction aims at solving an equivalent integral equation on the surface of the scatterer. In this dissertation, we present three new techniques for the frequency domain, boundary integral equations. / text
9

[en] A FAST MULTIPOLE METHOD FOR HIGH ORDER BOUNDARY ELEMENTS / [pt] UM MÉTODO FAST MULTIPOLE PARA ELEMENTOS DE CONTORNO DE ALTA ORDEM

HELVIO DE FARIAS COSTA PEIXOTO 10 August 2018 (has links)
[pt] Desde a década de 1990, o Método Fast Multipole (FMM) tem sido usado em conjunto com o Métodos dos Elementos de Contorno (BEM) para a simulação de problemas de grande escala. Este método utiliza expansões em série de Taylor para aglomerar pontos da discretização do contorno, de forma a reduzir o tempo computacional necessário para completar a simulação. Ele se tornou uma ferramenta bastante importante para os BEMs, pois eles apresentam matrizes cheias e assimétricas, o que impossibilita a utilização de técnicas de otimização de solução de sistemas de equação. A aplicação do FMM ao BEM é bastante complexa e requer muita manipulação matemática. Este trabalho apresenta uma formulação do FMM que é independente da solução fundamental utilizada pelo BEM, o Método Fast Multipole Generalizado (GFMM), que se aplica a elementos de contorno curvos e de qualquer ordem. Esta característica é importante, já que os desenvolvimentos de fast multipole encontrados na literatura se restringem apenas a elementos constantes. Todos os aspectos são abordados neste trabalho, partindo da sua base matemática, passando por validação numérica, até a solução de problemas de potencial com muitos milhões de graus de liberdade. A aplicação do GFMM a problemas de potencial e elasticidade é discutida e validada, assim como os desenvolvimentos necessários para a utilização do GFMM com o Método Híbrido Simplificado de Elementos de Contorno (SHBEM). Vários resultados numéricos comprovam a eficiência e precisão do método apresentado. A literatura propõe que o FMM pode reduzir o tempo de execução do algoritmo do BEM de O(N2) para O(N), em que N é o número de graus de liberdade do problema. É demonstrado que esta redução é de fato possível no contexto do GFMM, sem a necessidade da utilização de qualquer técnica de otimização computacional. / [en] The Fast Multipole Method (FMM) has been used since the 1990s with the Boundary Elements Method (BEM) for the simulation of large-scale problems. This method relies on Taylor series expansions of the underlying fundamental solutions to cluster the nodes on the discretised boundary of a domain, aiming to reduce the computational time required to carry out the simulation. It has become an important tool for the BEMs, as they present matrices that are full and nonsymmetric, so that the improvement of storage allocation and execution time is not a simple task. The application of the FMM to the BEM ends up with a very intricate code, and usually changing from one problem s fundamental solution to another is not a simple matter. This work presents a kernel-independent formulation of the FMM, here called the General Fast Multipole Method (GFMM), which is also able to deal with high order, curved boundary elements in a straightforward manner. This is an important feature, as the fast multipole implementations reported in the literature only apply to constant elements. All necessary aspects of this method are presented, starting with the mathematical basics of both FMM and BEM, carrying out some numerical assessments, and ending up with the solution of large potential problems. The application of the GFMM to both potential and elasticity problems is discussed and validated in the context of BEM. Furthermore, the formulation of the GFMM with the Simplified Hybrid Boundary Elements Method (SHBEM) is presented. Several numerical assessments show that the GFMM is highly efficient and may be as accurate as arbitrarily required, for problems with up to many millions of degrees of freedom. The literature proposes that the FMM is capable of reducing the time complexity of the BEM algorithms from O(N2) to O(N), where N is the number of degrees of freedom. In fact, it is shown that the GFMM is able to arrive at such time reduction without resorting to techniques of computational optimisation.
10

Coloides carregados ou porosos: estudos das propriedades hidrodinâmicas e eletrocinéticas com o método Lattice Boltzmann / Charged or porous colloids: studies of studies of hydrodynamic and electrokinetic properties with Lattice Boltzmann Method

Wagner Gomes Rodrigues Junior 02 September 2016 (has links)
Este trabalho teve como motivação experimental problemas surgidos nos laboratórios de biofísica do IF-USP em medidas com vesículas carregadas, que podem ser usadas para estudar membranas biológicas. As propriedades destes sistemas, e, em particular, como função da temperatura, só podem ser investigadas indiretamente. A interpretação dos resultados depende de uma modelagem coerente. Entre as exigências de coerência, estariam a justificativa para a discrepância entre resultados para as medidas de raio dos macroíons lipídicos, no intervalo de temperaturas próximas à transição gelfluido, obtidas por técnicas experimentais diferentes (Static Light Scattering (SLS) e Dynamic Light Scattering (DLS)) e as anomalias no calor específico, na condutividade e na mobilidade eletroforética da solução coloidal iônica, no mesmo intervalo de temperatura. Estudos anteriores a este trabalho sugeriam a formação de poros em tais vesículas, como tentativa de explicar diferenças nos resultados das técnicas de espalhamento, bem como o papel da análise do equilíbrio termodinâmico da dissociação sobre as propriedades térmicas e termoelétricas. Para interpretar e dar coerência aos diversos resultados experimentais existentes, é necessário desenvolver modelos teóricos. É objetivo deste trabalho desenvolver técnicas de tratamento de modelos teóricos quanto às propriedades de transporte. Assim, neste estudo utilizamos o método computacional conhecido como ``Lattice Boltzmann\'\' (LBM) procurando focar no estudo de propriedades de meios porosos e de coloides carregados. Para melhor compreensão dos limites e justificativas do modelo, realizamos um breve estudo sobre a equação de Boltzmann e suas propriedades. Assim, depois de desenvolver um código em linguagem C para o LBM, e testá-lo com resultados conhecidos, utilizamos o ``Lattice Boltzmann\'\' para determinar o coeficiente de arrasto de esferas e cascas esféricas porosas, comparando com resultados analíticos e experimentais conhecidos. Para o estudo de sistemas coloidais carregados, acoplamos o ``Lattice Boltzmann`` a outra técnica computacional, ``Fast Multipole Method\'\' (FMM), para poder estudar efeitos elétricos e hidrodinâmicos associados aos coloides com carga. Foram feitas simulações de fluxo eletrosmótico e eletrólitos entre placas carregadas que apresentaram resultados animadores ao comparar com resultados analíticos, constatando que FMM pode ser uma alternativa à resolução da equação de Laplace para determinar o potencial eletrostático em simulações com LBM. Além disso foram feitas simulações de mobilidade eletroforética em meios sem sal, que mostram que o código pode ser utilizado como ferramenta na busca da solução para as dúvidas surgidas no estudo de vesículas carregadas. / This study was inspired by the problem of interpreting experimental results arising in the Biophysics Laboratory of the Institute of Physics - USP. Different techniques are used to investigate charged vesicles that are used as an experimental model for biological membranes. Careful measurements of vesicle radius, in the range of gel-fluid transition temperature, through different experimental techniques, namely Static and Dynamic Light Scattering (SLS and DLS) led to very different results. Previous studies of the same system suggested the formation of pores in such vesicles. In addition, specific heat and conductivity measurements on charged vesicles displayed an anomalous region, in the range of gel-fluid transition temperature, as compared to neutral vesicles. In an attempt to make progress in the understanding of the above problems, we use the computational method known as Lattice Boltzmann Method (LBM) seeking to focus on the study of transport properties of porous and charged colloids. To better understand the limits of the model and justifications, we make a brief study of the Boltzmann equation and its properties. Thus, after developing a code in $C$ language for LBM, and testing it with known results, we use the Lattice Boltzmann method to obtain the drag coefficient of spheres and porous spherical shells. We compare our results with analytical and experimental results from the literature and obtain good fitting. For the study of charged colloidal systems, we associate the Lattice Boltzmann method with a computational technique for the calculation of the eletrostatic potential: the Fast Multipole Method (FMM), which enables us to study electrical and hydrodynamic effects on charged colloids. We simulate electroosmotic flow and electrolytes between charged plates, with encouraging results in the comparison with known analytical result. This suggests that FMM may be a good alternative to resolution of the Laplace equation to determine the electrostatic potential simulations with LBM. Moreover we have obtained the electrophoretic mobility for charged colloids in saltless solutions, which makes our code a possible instrument for the interpretation of experimental results on charged vesicles.

Page generated in 0.0639 seconds