• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 704
  • 479
  • 221
  • 137
  • 89
  • 27
  • 22
  • 19
  • 16
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • Tagged with
  • 2041
  • 600
  • 409
  • 229
  • 199
  • 198
  • 141
  • 133
  • 127
  • 117
  • 115
  • 113
  • 108
  • 96
  • 95
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Residual Soil Nitrogen Evaluations in Irrigated Desert Soils, 2001

Silvertooth, J. C., Galadima, A., Norton, E. R. 18 March 2002 (has links)
Field experiments were conducted in Arizona in 2001 at three locations (Maricopa, Marana, and Safford). The Maricopa and Safford experiments have been conducted for14 consecutive seasons and the Marana site was initiated in 1994. The original purposes of the experiments were to test nitrogen (N) fertilization strategies and to validate and refine N fertilization recommendations for Upland (Gossypium hirsutum L.) and American Pima (G. barbadense L.) cotton. The experiments have each utilized N management tools such as pre-season soil tests for NO₃⁻-N, in-season plant tissue testing (petioles) for N fertility status, and crop monitoring to ascertain crop fruiting patterns and crop N needs. At each location, treatments varied from a conservative to a more aggressive approach of N management. Results at each location revealed a strong relationship between the crop fruit retention levels and N needs for the crop. This pattern was further reflected in final yield analysis as a response to the N fertilization regimes used. The higher, more aggressive, N application regimes did not benefit yields at any location. Generally, the more conservative, feedback approach to N management provided optimum yields at all locations. In 2001, a transition project evaluating the residual N effects associated with each treatment regime was initiated and no fertilizer N was applied. Therefore, all N taken-up by the crop was derived from residual soil N. In 2001 there were no significant differences among the original fertilizer N regimes in terms of residual soil NO₃⁻-N concentrations, crop growth, development, lint yield, or fiber properties. The lint yields were very uniform at each location and averaged 1500, 1100, and 850 lbs. lint/acre for Maricopa, Marana, and Safford, respectively.
482

Phosphorus Fertility Evaluation in Graham County

Norton, E. R., Silvertooth, J. C., Clark, L. J. 06 1900 (has links)
A series of three phosphorus (P) fertility experiments were conducted in 2001 in Graham County. These studies follow similar experiments conducted over the past three seasons. Results from 2001 were consistent with previous results indicating a positive relationship between yield and P fertilizer applications in relation to soil test indices. Modest yield increases were observed from a minimum of 25 to 80 lbs. lint per acre with an application of approximately 70 lbs. of P as P₂O₅ per acre. Yield differences from previous years have been as great as 170 lbs. of lint per acre. With the increased use of UAN-32 as a primary fertilizer source and a reduction in the application of P fertilizers, which is typically associated with a rotation of small grains, a depletion of soil P is a potential result. A continuation of this research with varying rates of P fertilizer will take place in 2002 in an attempt to relate soil test P levels to yield increases observed in recent years. The results of this research demonstrate the possible need for a return to use of fertilizers with supplemental P for optimum yields that would be predictable based on soil test results.
483

Evaluation of Potassium Fertility in a Common Agricultural Soil of Arizona

Silvertooth, J. C., Galadima, A. 06 1900 (has links)
Two field experiments were conducted during the 2001 growing season to address potassium (K) fertility response of two commonly grown varieties of cotton in Arizona. The studies were conducted near Coolidge, AZ in two separate fields and each consisted of two treatments, an untreated control and a treatment receiving a preseason side-dress application of K fertilizer. Plant growth and development estimates revealed that fruit retention (FR) and height to node ratio (HNR) levels were similar for both treatments in both fields. Lint yield data also indicated no difference between the fertilized and unfertilized treatments in both fields.
484

Residual Soil Nitrogen Evaluations in Irrigated Desert Soils, 2002

Silvertooth, J. C., Galadima, A., Norton, E. R. 05 1900 (has links)
Field experiments investigating N fertilizer management in irrigated cotton production have been conducted for the past 15 seasons at three Arizona locations on University of Arizona Agricultural Centers (Maricopa, MAC; Marana, MAR; and Safford, SAC). In 2002, residual N studies were conducted at two of these locations (MAC and MAR). The MAC and SAC experiments have been conducted each season since 1989 and the Marana site was initiated in 1994. The original purposes of the experiments were to test nitrogen (N) fertilization strategies and to validate and refine N fertilization recommendations for Upland (Gossypium hirsutum L.) and American Pima (G. barbadense L.) cotton. The experiments have each utilized N management tools such as pre-season soil tests for NO₃⁻-N, in-season plant tissue testing (petioles) for N fertility status, and crop monitoring to ascertain crop fruiting patterns and crop N needs. At each location, treatments varied from a conservative to a more aggressive approach of N management. Results at each location revealed a strong relationship between the crop fruit retention levels and N needs for the crop. This pattern was further reflected in final yield analysis as a response to the N fertilization regimes used. The higher, more aggressive N application regimes did not consistently benefit yields at any location. Generally, the more conservative, feedback approach to N management provided optimum yields at all locations. In 2001, a transition project evaluating the residual N effects associated with each treatment regime was initiated and no fertilizer N was applied. Therefore, all N taken-up by the crop was derived from residual soil N. In 2001, there were no significant differences among the original fertilizer N regimes in terms of residual soil NO₃⁻-N concentrations, crop growth, development, lint yield, or fiber properties. The lint yields were very uniform at each location and averaged 1500, 1100, and 850 lbs. lint/acre for MAC, MAR, and SAC, respectively. In 2002, results were very similar at the MAC and MAR locations. Trends associated with residual fertilizer N effects are not evident at either location just two seasons following N fertilizer applications.
485

Effects of Foliar Fertilizers Containing Calcium on Early June Planted Cotton in the Palo Verde Valley, 2000

Rethwisch, M. D., Duran, E., Seiler, J., Nelson, J., Hayden, P. 05 1900 (has links)
Three foliar fertilizers containing calcium were applied at first bloom to evaluate effects on late planted (June 1) cotton in the Palo Verde Valley. Application of Calcium Metalosate resulted in increased retention percentages when compared with other foliar fertilizers at 21 days post treatment as well as more nodes/plant and calculated fruiting structures/plant. Yields did not reflect these differences however, as highest overall yields were from the untreated check, which yielded about 100 lbs. of lint/acre more than foliar fertilizer treatments. Foliar treatments did result in numerically lower micronaire and longer fibers from first pick cotton. Cotton from the first pick Calcium Metalosate treatment was strongest, but similar to other treatments. Foliar treatments did result in increased cotton value/acre by $65-95/acre, but differences noted were not consistent across field. Increased value noted for fertilizers was associated with areas of field with lowest retention rates in the untreated check at three weeks post application, and further reduction in lint quality value of untreated cotton, due perhaps to crop stresses.
486

Effects of AuxiGro® WP and Fertilizers on Upland Cotton in the Palo Verde Valley, 2002

Rethwisch, M. D., Suffle, R., Reay, M., Murphey, R. 05 1900 (has links)
A field experiment was conducted to obtain data from upland cotton grown under low desert conditions to document of the effects of AuxiGro® WP and treatments consisting of AuxiGro® WP plus various foliar fertilizers on cotton yield and quality. Treatments were applied the morning of July 6, 2002, to DPL 655BR cotton that had begun bloom approximately June 28. Yields and quality data were obtained and economics calculated. AuxiGro by itself did not result in a yield increase, but did so in combination with various fertilizers. Highest quality resulted in the 8 oz/acre rate of AuxiGro + Foliar Pride fertilizer, but highest yields were documented from the 4 oz./acre rate of AuxiGro + CalMax. All treatments increased harvested value of cotton/acre when compared with the untreated check, with the treatment consisting of 4 oz./acre rate of AuxiGro + CalMax worth almost $200/acre more than the untreated check.
487

Reduced Tillage Effects on Irrigation Management in Cotton

Martin, E. C., Adu-Tutu, K. O., McCloskey, W. B., Husman, S. H., Clay, P., Ottman, M. 05 1900 (has links)
Conservation or reduced tillage practices in cotton-based crop rotation systems were studied in field experiments initiated at Marana, Coolidge and Goodyear in 2001. Following barley cover and grain crops, soil and water management assessments were made during the 2002 cotton season at the three sites. Cover and grain crop residues and a lack of tillage prior to planting cotton or during the cotton season increased the infiltration of irrigation water into coarsetextured soils, slowed irrigation advance times, and increased the amount of irrigation water used at two of the three sites compared to conventional tillage treatments.
488

Phosphorus Fertility Evaluation in Graham County

Norton, E. R., Clark, L. J. 05 1900 (has links)
A field study was implemented in 2002 in the Upper Gila River Valley of Safford to investigate the effects of varying phosphorus (P) fertilization rates on yield and quality of Upland cotton. This study is a continuation of work performed in this valley that began in 1998. This study was organized in a randomized complete block design with four treatments including four rates of 10-34-0 fertilizer, 0, 15, 30, and 45 gallons per acre (gpa) replicated 4 times. Lint yield results indicate a positive response to the application of 10-34-0 fertilizer with yield increasing linearly up to 30 gpa. The 45 gpa treatment resulted in a slightly lower yield than the 30 gpa treatment. This was likely due to the high level of nitrogen (N) fertilizer and excessive vegetative growth at the expense of reproductive growth (yield) that occurred in treatment 4.
489

Comparison of Potassium Fertilizer Products and Amounts on DPL555BR Cotton, 2003

Rethwisch, Michael D., Reay, Mark, Quist, Aron, Cox, Tim, Grudovich, Jessica, Wellman, Jessica 05 1900 (has links)
No description available.
490

Residual Soil Nitrogen Evaluations in Irrigated Desert Soils, 2003

Silvertooth, J. C., Galadima, A., Norton, E. R. 05 1900 (has links)
Field experiments aimed at investigating N fertilizer management in irrigated cotton production have been conducted for the past 16 seasons at three University of Arizona Agricultural Centers (Maricopa, MAC; Marana, MAR; and Safford, SAC). In 2003, residual N studies were conducted at two of these locations (MAC and MAR). The MAC and SAC experiments have been conducted each season since 1989 and the Marana site was initiated in 1994. Original purposes of the experiments were to test nitrogen (N) fertilization strategies and to validate and refine N fertilization recommendations for Upland (Gossypium hirsutum L.) and American Pima (G. barbadense L.) cotton. Each experiment has utilized N management tools such as pre-season soil tests for NO₃⁻-N, in-season plant tissue testing (petioles) for N fertility status, and crop monitoring to ascertain crop fruiting patterns and crop N needs. At each location, treatments varied from a conservative to a more aggressive approach of N management. Results at each location revealed a strong relationship between fruit retention levels and N needs of the crop. This pattern was further reflected in the final yield analysis as a response to the N fertilization regimes used. The higher, more aggressive N application regimes did not consistently benefit yields at any location. Generally, the more conservative, feedback approach to N management provided optimum yields at all locations. In 2001, a transition project evaluating residual N effects associated with each treatment regime was initiated with no N fertilizer applied. Therefore, all N taken-up by the crop was derived from residual soil N. In 2001, 2002, and even 2003 there were no significant differences among the original fertilizer N regimes in terms of residual soil NO₃⁻-N concentrations, crop growth, development, lint yield, or fiber properties. Lint yields were very uniform at each location in 1991 and averaged 1500, 1100, and 850 lbs. lint/acre for MAC, MAR, and SAC, respectively. In 2002, results were very similar and yields averaged 1473 and 1060 lbs. lint/acre for MAC and MAR locations respectively. The results for 2003 were similar to the results of the prior two years with yields at 1322 and 1237 lbs. lint/acre for MAC and MAR, respectively. Trends associated with residual fertilizer N effects are not evident at either location following three consecutive seasons of N fertilizer treatments.

Page generated in 0.0403 seconds