• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 10
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 55
  • 55
  • 27
  • 21
  • 15
  • 14
  • 13
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A hybrid fluid simulation on the Graphics Processing Unit (GPU)

Flannery, Rebecca Lynn 10 October 2008 (has links)
This thesis presents a method to implement a hybrid particle/grid uid simulation on graphics hardware. The goal is to speed up the simulation by exploiting the parallelism of the graphics processing unit, or GPU. The Fluid Implicit Particle method is adapted to the programming style of the GPU. The methods were implemented on a current generation graphics card. The GPU based program exhibited a small speedup over its CPU based counterpart.
2

Visual simulation of falling water and plunge pools

Howes, Ashley T. January 1999 (has links)
No description available.
3

Integral Methods for Versatile Fluid Simulation

Huang, Libo 30 November 2021 (has links)
Physical simulations of natural phenomena usually boil down to solving an ordinary or partial differential equation system. Partial differential equation systems can be formulated either in differential form or in integral form. This dissertation explores integral methods for the simulation of magnetic fluids, so-called ferrofluids, and the surface of the vast ocean. The first two parts of this dissertation aim to contribute to the development of accurate and efficient methods for simulating ferrofluids on the macroscopic (in the order of millimeters) scale. The magnetic nature of these fluids imposes challenges for the simulation. The two most important challenges are to first model the influence of ferrofluids on surrounding magnetic fields and second the influence of magnetic forces on the fluids’ dynamics. To tackle these challenges, two Lagrangian simulation methods have been proposed. The first method discretizes the magnetic substance as clusters of particles carrying radial basis functions and applies magnetic forces between these particles. This is a mesh-free method suitable for particle-based fluid simulation frameworks such as smoothed-particle hydrodynamics. The second method follows another direction, only discretizing the fluid’s surface as triangles and vertices. A surface-based simulation for the fluid part is employed, and a boundary element method is utilized for the magnetic part. The magnetic forces are added as gradients of the magnetic energy defined on the fluid’s surface. The second approach has to solve significantly fewer unknowns in the underlying equations, and uses a more accurate surface tension model compared to the radial basis function approach. The proposed methods are able to reproduce a series of characteristic phenomena of magnetic fluids, both qualitatively and in some cases even quantitatively which leads to a better understanding of such kind of materials. The boundary element method employed in the second part shows advantages beyond ferrofluids. In the third part of this thesis, a boundary element method is coupled with a particle-based fluid simulator for ocean simulation. The wavy motion of the ocean is simulated using large triangle meshes, while water splashes are simulated using particles. This approach is much more efficient in terms of computation time and memory consumption.
4

Vortex Methods for Fluid Simulation in Computer Graphics

Vines Neuwirth, Mauricio Alfredo 14 January 2013 (has links)
Fluid simulations for computer graphics applications have attracted the attention of many researchers and practitioners due to the enhanced realism that natural phenomena simulation adds to graphical applications. Vortex methods are receiving increasing attention from the computer graphics community for simple and direct modeling of complex flow phenomena such as turbulence. However, vortex methods have not been developed yet to the level of other techniques for fluid simulation in computer graphics. In this work we present a novel simulation framework to model inviscid flows using Lagrangian vortex particle methods. We introduce novel stable methods to solve the vorticity flow equations that produce highly detailed visual fluid simulations. We incorporate the full interplay of solids and fluids in our framework. The coupling between free-form solids, represented by arbitrary surface meshes and fluids simulated with vortex methods, leads to visually rich simulations. Previous vortex simulators only focus on modeling the solid as a boundary for the flow. We model solid boundaries using an extended potential flow at the solid surface coupled with a boundary layer simulation. This allows the accurate simulation of two processes of visual interest. The first is the introduction of surface vorticity in the main flow as turbulence (vortex shedding). The second is the motion of the solid induced by fluid forces, which is calculated from the dynamics of vorticity in the flow and the rate of vorticity creation at solid surfaces. We demonstrate high quality results of our methods simulating flows around solid objects and solid object propulsion due to flows. This work ameliorates one of the important omissions in the development of vortex methods for computer graphics, which is the simulation of two-way coupling of solids and fluids.
5

Vortex Methods for Fluid Simulation in Computer Graphics

Vines Neuwirth, Mauricio Alfredo 14 January 2013 (has links)
Fluid simulations for computer graphics applications have attracted the attention of many researchers and practitioners due to the enhanced realism that natural phenomena simulation adds to graphical applications. Vortex methods are receiving increasing attention from the computer graphics community for simple and direct modeling of complex flow phenomena such as turbulence. However, vortex methods have not been developed yet to the level of other techniques for fluid simulation in computer graphics. In this work we present a novel simulation framework to model inviscid flows using Lagrangian vortex particle methods. We introduce novel stable methods to solve the vorticity flow equations that produce highly detailed visual fluid simulations. We incorporate the full interplay of solids and fluids in our framework. The coupling between free-form solids, represented by arbitrary surface meshes and fluids simulated with vortex methods, leads to visually rich simulations. Previous vortex simulators only focus on modeling the solid as a boundary for the flow. We model solid boundaries using an extended potential flow at the solid surface coupled with a boundary layer simulation. This allows the accurate simulation of two processes of visual interest. The first is the introduction of surface vorticity in the main flow as turbulence (vortex shedding). The second is the motion of the solid induced by fluid forces, which is calculated from the dynamics of vorticity in the flow and the rate of vorticity creation at solid surfaces. We demonstrate high quality results of our methods simulating flows around solid objects and solid object propulsion due to flows. This work ameliorates one of the important omissions in the development of vortex methods for computer graphics, which is the simulation of two-way coupling of solids and fluids.
6

Vortex Methods for Fluid Simulation in Computer Graphics

Vines Neuwirth, Mauricio Alfredo January 2013 (has links)
Fluid simulations for computer graphics applications have attracted the attention of many researchers and practitioners due to the enhanced realism that natural phenomena simulation adds to graphical applications. Vortex methods are receiving increasing attention from the computer graphics community for simple and direct modeling of complex flow phenomena such as turbulence. However, vortex methods have not been developed yet to the level of other techniques for fluid simulation in computer graphics. In this work we present a novel simulation framework to model inviscid flows using Lagrangian vortex particle methods. We introduce novel stable methods to solve the vorticity flow equations that produce highly detailed visual fluid simulations. We incorporate the full interplay of solids and fluids in our framework. The coupling between free-form solids, represented by arbitrary surface meshes and fluids simulated with vortex methods, leads to visually rich simulations. Previous vortex simulators only focus on modeling the solid as a boundary for the flow. We model solid boundaries using an extended potential flow at the solid surface coupled with a boundary layer simulation. This allows the accurate simulation of two processes of visual interest. The first is the introduction of surface vorticity in the main flow as turbulence (vortex shedding). The second is the motion of the solid induced by fluid forces, which is calculated from the dynamics of vorticity in the flow and the rate of vorticity creation at solid surfaces. We demonstrate high quality results of our methods simulating flows around solid objects and solid object propulsion due to flows. This work ameliorates one of the important omissions in the development of vortex methods for computer graphics, which is the simulation of two-way coupling of solids and fluids.
7

[en] FLUID INTERACTIVE ANIMATION BASED ON PARTICLE SYSTEM USING SPH METHOD / [pt] ANIMAÇÃO INTERATIVA DE FLUIDO BASEADA EM PARTÍCULAS PELO MÉTODO SPH

FABIO ISSAO NAKAMURA 27 June 2007 (has links)
[pt] Neste trabalho foi feito um estudo investigativo sobre animação de fluidos utilizando sistemas de partículas. Baseado nas propostas apresentadas por Muller et al., esta dissertação objetiva investigar e compreender o uso do método Lagrangeano baseado em partículas, conhecido como Smoothed Particle Hydrodynamics (SPH), para simulação de fluidos. A validação do método foi feita através da implementação de uma biblioteca capaz de animar fluidos a taxas interativas. Para testar a eficácia e eficiência do método, a biblioteca desenvolvida permite a instanciação de diferentes configurações, incluindo o tratamento de colisões do fluido com obstáculos, o tratamento da interação entre dois fluidos distintos e o tratamento de forças externas exercidas pelo usuário via um mecanismo de interação. / [en] This work investigates the use of particle-based system for fluid animation. Based on proposals presented by Müller et al., the goal of this dissertation is to investigate and fully understand the use of a Lagrangian method known as Smoothed Particle Hydrodynamics (SPH) for fluid simulations. A library has been implemented in order to validate the method for fluid animation at interactive rate. To demonstrate the method effectiveness and efficiency, the resulting library allows the instantiation of different configurations, including the treatment of fluid-obstacle collisions, interaction between two distinct fluids, and fluid-user interaction.
8

A framework for digital watercolor

O'Brien, Patrick Michael 10 October 2008 (has links)
This research develops an extendible framework for reproducing watercolor in a digital environment, with a focus on interactivity using the GPU. The framework uses the lattice Boltzmann method, a relatively new approach to fluid dynamics, and the Kubelka-Munk reflectance model to capture the optical properties of watercolor. The work is demonstrated through several paintings produced using the system.
9

A GPU Accelerated Smoothed Particle Hydrodynamics Capability For Houdini

Sanford, Mathew 2012 August 1900 (has links)
Fluid simulations are computationally intensive and therefore time consuming and expensive. In the field of visual effects, it is imperative that artists be able to efficiently move through iterations of the simulation to quickly converge on the desired result. One common fluid simulation technique is the Smoothed Particle Hydrodynamics (SPH) method. This method is highly parellelizable. I have implemented a method to integrate a Graphics Processor Unit (GPU) accelerated SPH capability into the 3D software package Houdini. This helps increase the speed with which artists are able to move through these iterations. This approach is extendable to allow future accelerations of the algorithm with new SPH techniques. Emphasis is placed on the infrastructure design so it can also serve as a guideline for both GPU programming and integrating custom code with Houdini.
10

Retiming Smoke Simulation Using Machine Learning

Giraud Carrier, Samuel Charles Gérard 24 March 2020 (has links)
Art-directability is a crucial aspect of creating aesthetically pleasing visual effects that help tell stories. A particularly common method of art direction is the retiming of a simulation. Unfortunately, the means of retiming an existing simulation sequence which preserves the desired shapes is an ill-defined problem. Naively interpolating values between frames leads to visual artifacts such as choppy frames or jittering intensities. Due to the difficulty in formulating a proper interpolation method we elect to use a machine learning approach to approximate this function. Our model is based on the ODE-net structure and reproduces a set of desired time samples (in our case equivalent to time steps) that achieves the desired new sequence speed, based on training from frames in the original sequence. The flexibility of the updated sequences' duration provided by the time samples input makes this a visually effective and intuitively directable way to retime a simulation.

Page generated in 0.0337 seconds