Spelling suggestions: "subject:"[een] FLUTTER"" "subject:"[enn] FLUTTER""
141 |
Numerical Study of Limit Cycle Oscillation Using Conventional and Supercritical AirfoilsLoo, Felipe Manuel 01 January 2008 (has links)
Limit Cycle Oscillation is a type of aircraft wing structural vibration caused by the non-linearity of the system. The objective of this thesis is to provide a numerical study of this aeroelastic behavior. A CFD solver is used to simulate airfoils displaying such an aeroelastic behavior under certain airflow conditions. Two types of airfoils are used for this numerical study, including the NACA64a010 airfoil, and the supercritical NLR 7301 airfoil. The CFD simulation of limit cycle oscillation (LCO) can be obtained by using published flow and structural parameters. Final results from the CFD solver capture LCO, as well as flutter, behaviors for both wings. These CFD results can be obtained by using two different solution schemes, including the Roe and Zha scheme. The pressure coefficient and skin friction coefficient distributions are computed using the CFD results for LCO and flutter simulations of these two airfoils, and they provide a physical understanding of these aeroelastic behaviors.
|
142 |
Aeroelastic and Flight Dynamics Analysis of Folding Wing SystemsWang, Ivan January 2013 (has links)
<p>This dissertation explores the aeroelastic stability of a folding wing using both theoretical and experimental methods. The theoretical model is based on the existing clamped-wing aeroelastic model that uses beam theory structural dynamics and strip theory aerodynamics. A higher-fidelity theoretical model was created by adding several improvements to the existing model, namely a structural model that uses ANSYS for individual wing segment modes and an unsteady vortex lattice aerodynamic model. The comparison with the lower-fidelity model shows that the higher-fidelity model typical provides better agreement between theory and experiment, but the predicted system behavior in general does not change, reinforcing the effectiveness of the low-fidelity model for preliminary design of folding wings. The present work also conducted more detailed aeroelastic analyses of three-segment folding wings, and in particular considers the Lockheed-type configurations to understand the existence of sudden changes in predicted aeroelastic behavior with varying fold angle for certain configurations. These phenomena were observed in carefully conducted experiments, and nonlinearities - structural and geometry - were shown to suppress the phenomena. Next, new experimental models with better manufacturing tolerances are designed to be tested in the Duke University Wind Tunnel. The testing focused on various configurations of three-segment folding wings in order to obtain higher quality data. Next, the theoretical model was further improved by adding aircraft longitudinal degrees of freedom such that the aeroelastic model may predict the instabilities for the entire aircraft and not just a clamped wing. The theoretical results show that the flutter instabilities typically occur at a higher air speed due to greater frequency separation between modes for the aircraft system than a clamped wing system, but the divergence instabilities occur at a lower air speed. Lastly, additional experimental models were designed such that the wing segments may be rotated while the system is in the wind tunnel. The fold angles were changed during wind tunnel testing, and new test data on wing response during those transients were collected during these experiments.</p> / Dissertation
|
143 |
Multidisciplinary Design And Optimization Of A Composite Wing BoxHasan, Muvaffak 01 October 2003 (has links) (PDF)
In this study an automated multidisciplinary design optimization code is developed for the minimum weight design of a composite wing box. The multidisciplinary static strength, aeroelastic stability, and manufacturing requirements are simultaneously addressed in a global optimization environment through a genetic search algorithm.
The static strength requirements include obtaining positive margins of safety for all the structural parts. The modified engineering bending theory together with the coarse finite element model methodology is utilized to determine the stress distribution. The nonlinear effects, stemming from load redistribution in the structure after buckling occurs, are also taken into account. The buckling analysis is based on the Rayleigh-Ritz method and the Gerard method is used for the crippling analysis.
The aeroelastic stability requirements include obtaining a flutter/divergence free wing box with a prescribed damping level. The root locus method is used for aeroelastic stability analysis. The unsteady aerodynamic loads in the Laplace domain are obtained from their counterparts in the frequency domain by using Rogers rational function approximations.
The outer geometry of the wing is assumed fixed and the design variables included physical properties like thicknesses, cross sectional dimensions, the number of plies and their corresponding orientation angles.
The developed code, which utilizes MSC/NASTRAN® / as a finite element solver, is used to design a single cell, wing box with internal metallic substructure and composite skins.
|
144 |
Optimal design of a composite wing structure for a flying-wing aircraft subject to multi-constraintXu, Rongxin. 01 1900 (has links)
This thesis presents a research project and results of design and optimization of a composite wing structure for a large aircraft in flying wing configuration. The design process started from conceptual design and preliminary design, which includes initial sizing and stressing followed by numerical modelling and analysis of the wing structure. The research was then focused on the minimum weight optimization of the /composite wing structure /subject to multiple design /constraints. The modelling, analysis and optimization process has been performed by using the NASTRAN code. The methodology and technique not only make the modelling in high accuracy, but also keep the whole process within one commercial package for practical application.
The example aircraft, called FW-11, is a 250-seat commercial airliner of flying wing configuration designed through our MSc students Group Design Project (GDP) in Cranfield University. Started from conceptual design in the GDP, a high-aspect-ratio and large sweepback angle flying wing configuration has been adopted. During the GDP, the author was responsible for the structural layout design and material selection. Composite material has been chosen as the preferable material for both the inner and outer wing components. Based on the derivation of structural design data in the conceptual phase, the author continued with the preliminary design of the outer wing airframe and then focused on the optimization of the composite wing structure. Cont/d.
|
145 |
境界層の超音速パネルフラッタへの影響橋本, 敦, HASHIMOTO, Atsushi, 八木, 直人, YAGI, Naoto, 中村, 佳朗, NAKAMURA, Yoshiaki 05 April 2007 (has links)
No description available.
|
146 |
Nonlinear Aeroelastic Analysis of UAVs: Deterministic and Stochastic ApproachesSukut, Thomas 06 September 2012 (has links)
Aeroelastic aspects of unmanned aerial vehicles (UAVs) is analyzed by treatment of a typical section containing geometrical nonlinearities. Equations of motion are derived and numerical integration of these equations subject to quasi-steady aerodynamic forcing is performed. Model properties are tailored to a high-altitude long-endurance unmanned aircraft. Harmonic balance approximation is employed based on the steady-state oscillatory response of the aerodynamic forcing. Comparisons are made between time integration results and harmonic balance approximation. Close agreement between forcing and displacement oscillatory frequencies is found. Amplitude agreement is off by a considerable margin. Additionally, stochastic forcing effects are examined. Turbulent flow velocities generated from the von Karman spectrum are applied to the same nonlinear structural model. Similar qualitative behavior is found between quasi-steady and stochastic forcing models illustrating the importance of considering the non-steady nature of atmospheric turbulence when operating near critical flutter velocity.
|
147 |
Flutter and Forced Response of Turbomachinery with Frequency Mistuning and Aerodynamic AsymmetryMiyakozawa, Tomokazu 25 April 2008 (has links)
This dissertation provides numerical studies to improve bladed disk assembly design for preventing blade high cycle fatigue failures. The analyses are divided into two major subjects. For the first subject presented in Chapter 2, the mechanisms of transonic fan flutter for tuned systems are studied to improve the shortcoming of traditional method for modern fans using a 3D time-linearized Navier-Stokes solver. Steady and unsteady flow parameters including local work on the blade surfaces are investigated. It was found that global local work monotonically became more unstable on the pressure side due to the flow rollback effect. The local work on the suction side significantly varied due to nodal diameter and flow rollback effect. Thus, the total local work for the least stable mode is dominant by the suction side. Local work on the pressure side appears to be affected by the shock on the suction side. For the second subject presented in Chapter 3, sensitivity studies are conducted on flutter and forced response due to frequency mistuning and aerodynamic asymmetry using the single family of modes approach by assuming manufacturing tolerance. The unsteady aerodynamic forces are computed using CFD methods assuming aerodynamic symmetry. The aerodynamic asymmetry is applied by perturbing the influence coefficient matrix. These aerodynamic perturbations influence both stiffness and damping while traditional frequency mistuning analysis only perturbs the stiffness. Flutter results from random aerodynamic perturbations of all blades showed that manufacturing variations that effect blade unsteady aerodynamics may cause a stable, perfectly symmetric engine to flutter. For forced response, maximum blade amplitudes are significantly influenced by the aerodynamic perturbation of the imaginary part (damping) of unsteady aerodynamic modal forces. This is contrary to blade frequency mistuning where the stiffness perturbation dominates. / Dissertation
|
148 |
The Effect of Wing Damage on Aeroelastic BehaviorConyers, Howard J. January 2009 (has links)
<p>Theoretical and experimental studies are conducted in the field of aeroelasticity. Specifically, two rectangular and one cropped delta wings with a hole are analyzed in this dissertation for their aeroelastic behavior.</p><p>The plate-like wings are modeled using the finite element method for the structural theory. Each wing is assumed to behave as a linearly elastic and isotropic, thin plate. These assumptions are those of small-deflection theory of bending which states that the plane sections initially normal to the midsurface remain plane and normal to that surface after bending. The wings are modeled in low speed flows according to potential flow theory. The potential flow is governed by the aerodynamic potential equation, a linear partial differential equation. The aerodynamic potential equation is solved using a distribution of doublets that relates pressure to downwash in the doublet lattice method. A hole in a wing-like structure is independently investigated theoretically and experimentally for its structural and aerodynamic behavior.</p><p>The aeroelastic model couples the structural and aerodynamic models using Lagrange's equations. The flutter boundary is predicted using the V-g method. Linear theoretical models are capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests. Along with flutter prediction, a brief survey on gust response and the addition of stores(missile or fuel tanks) are examined.</p> / Dissertation
|
149 |
Aeroelastic Analysis Of An Unmanned Aerial VehicleSusuz, Umut 01 January 2008 (has links) (PDF)
In this thesis aeroelastic analysis of a typical Unmanned Aerial Vehicle (UAV) using MSC® / FlightLoads and Dynamics module and MSC® / NASTRAN Aero 1 solver was performed. The analyses were carried out at sea level, 1000m, 2000m and 4000m altitudes for Mach Numbers M=0.2, 0.4 and 0.6 for the full model of the UAV. The flutter characteristics of the UAV for different flight conditions were obtained and presented. The effect of altitude on flutter characteristics has been examined and compared with the theoretical and experimental trends in the literature. Also the divergence characteristics of the full model UAV was obtained.
In the study, some verification and test cases are also included. The results of the analyses of an untapered swept-wing and AGARD 445.6 wing models were compared with wind tunnel data and a maximum error of 1.3 % in the flutter speed prediction was obtained. In two different wing models the effect of taper was investigated.
|
150 |
Contribution à l'amélioration de la technique d'ablation endocavitaire des macro-réentrées atriales droites impliquant l'isthme cavotricuspideAndronache, Marius Aliot, Etienne. January 2007 (has links) (PDF)
Thèse de doctorat : Bioingénierie. Ingénierie Cellulaire et Tissulaire : Nancy 1 : 2007. / Titre provenant de l'écran-titre.
|
Page generated in 0.04 seconds