• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] COMUNICAÇÃO POLÍTICA, MÉTODOS COMPUTACIONAIS E PANDEMIA: OS TRÊS PRIMEIROS MESES DA COVID-19 NO BRASIL E SEU PROCESSO DE ENQUADRAMENTO NO TWITTER / [en] POLITICAL COMMUNICATION, COMPUTATIONAL METHODS AND PANDEMIC: THE FIRST THREE MONTHS OF COVID19 IN BRAZIL AND ITS FRAMING PROCESS ON TWITTER

LEONARDO MAGALHAES FIRMINO 17 March 2022 (has links)
[pt] A pesquisa tem como objetivo estudar a variação temporal de enquadramentos genéricos e específicos sobre saúde no contexto da pandemia de covid-19 no Brasil. Se trata de um estudo de caso realizado no Twitter sobre o tema da saúde (n = 31.339.922) entre 15 de março e 15 junho de 2020. Como categorias analíticas, se estudaram 3 frames genéricos e 3 específicos sobre saúde em contextos de epidemias. Os frames genéricos foram operacionalizados de forma dedutiva: conflito, atribuição de responsabilidade e moralidade (SEMETKO; VALKENBURG, 2000). Os frames específicos foram operacionalizados com o método indutivo (DE VREESE, 2005): consequências da pandemia, medidas de contenção e métodos de tratamento. Os tweets foram classificados automaticamente mediante um método computacional dictionary based, garantindo a confiabilidade, a validez e a reprodutibilidade (KRIPPENDORFF, 2011; SAMPAIO; LYCARIÃO, 2018). Foi realizada uma série temporal para observar a variação diária da evocação de cada quadro nos 93 dias estudados. Foi construída também uma rede temporal de usuários conectados mediante menções, retweets e respostas, sobre a qual foi calculada a métrica PageRank para medir a sua influência diária sobre a rede. Foram selecionados os dez atores mais proeminentes segundo o seu PageRank na data de maior pico de cada frame da série temporal. Finalmente, foram sistematizadas as informações sobre o contexto de análise e sobre o clima de opinião no Brasil mediante surveys representativos da população brasileira com frequência diária (n = 1.800, ME = mais ou menos 2 por cento, IC = 95 por cento). Os resultados da pesquisa apontam que a ordem de evocação dos frames, do mais ao menos proeminente, foi: conflito, atribuição de responsabilidade, consequências da pandemia, moralidade, medidas de contenção e métodos de tratamento. Em especial, os quadros do conflito, da atribuição de responsabilidade e das consequências da pandemia estiveram fortemente relacionados a um enquadramento negativo, episódico e de interesse humano dos tweets. Por outro lado, os demais frames (moralidade, medidas de contenção e métodos de tratamento) priorizaram enquadramentos temáticos, cujas implicações eram preponderantemente de natureza mais social e menos individual. Se destaca também a significativa presença de perfis anônimos entre os Top10 usuários de cada frame, assim como militantes, especialistas em saúde, influenciadores digitais, jornalistas, órgãos de mídia, políticos e perfis de outra natureza. Por fim, no que se refere ao estudo das condições que estão associadas aos picos mais altos de evocação dos frames genéricos e específicos da série temporal, foi observado um fenômeno que se definiu como sincronização do enquadramento. Se define a sincronização do enquadramento como um fenômeno de ajuste coletivo da frequência ativação em rede de um determinado frame por meio da interação entre os indivíduos e influenciado por quatro fatores: contexto, sucessão de eventos associados, clima de opinião e combinação entre frames e temas. / [en] The research aims to study the temporal variation of generic and specific frames about health in the context of the Covid-19 Pandemic in Brazil. It is a case study conducted on Twitter about health (n = 31,339,922) between March 15 and June 15, 2020. As analytical categories, 3 generic and 3 specific frames about health in epidemic contexts were studied. The generic frames were operationalized deductively: conflict, attribution of responsibility and morality (SEMETKO; VALKENBURG, 2000). The specific frames were operationalized with the inductive method (DE VREESE, 2005): consequences of the pandemic, containment measures, and treatment methods. The tweets were automatically classified using a dictionary-based computational method, ensuring reliability, validity, and reproducibility (KRIPPENDORFF, 2011; SAMPAIO; LYCARIÃO, 2018). A time series was performed to observe the daily variation of the evocation of each frame in the 93 days studied. A temporal network of users connected through mentions, retweets, and replies was also performed, on which the PageRank metric was calculated to measure their daily influence on the network. The ten most prominent actors were selected according to their PageRank on the peak date of each frame of the time series. Finally, information on the context of analysis and on the climate of opinion in Brazil was systematized through representative surveys of the Brazilian population with daily frequency (n = 1,800, ME = plus–minus 2 percent, CI = 95 percent). The results indicate that the order of evocation of the frames, from most to least prominent, was conflict, attribution of responsibility, consequences of the pandemic, morality, containment measures, and treatment methods. In particular, the frames of conflict, attribution of responsibility, and consequences of the pandemic were strongly related to a negative, episodic, and human interest framing of the tweets. On the other hand, the other frames (morality, containment measures and treatment methods), prioritized thematic framings, whose implications were preponderantly of a more social and less individual nature. Also noteworthy is the significant presence of anonymous profiles among the Top10 users of each frame, as well as activists, health experts, digital influencers, journalists, media organizations, politicians, and profiles of another nature, such as fandoms and satirical. Finally, regarding the study of the conditions that explain the highest peaks of evocation of the generic and specific frames in the time series, a phenomenon that was defined in this thesis as framing synchronization was observed. Framing synchronization is defined as the phenomenon of collective adjustment of the frequency of network activation of a given frame through interaction between individuals and influenced by five factors: context, succession of associated events, climate of opinion, and the combination of frames, and issues.

Page generated in 0.051 seconds