Spelling suggestions: "subject:"[een] GAS CONDENSATE RESERVOIRS"" "subject:"[enn] GAS CONDENSATE RESERVOIRS""
1 |
Well test analysis for gas condensate reservoirs /Vo, Dyung Tien. January 1989 (has links)
Thesis (Ph.D.)--University of Tulsa, 1989. / Bibliography: leaves 300-306.
|
2 |
Chemical stimulation of gas condensate reservoirs an experimental and simulation study /Kumar, Viren, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
3 |
Chemical stimulation of gas condensate reservoirs: an experimental and simulation studyKumar, Viren 28 August 2008 (has links)
Not available / text
|
4 |
A semi-empirical approach to modelling well deliverability in gas condensate reservoirsUgwu, Johnson Obunwa January 2011 (has links)
A critical issue in the development of gas condensate reservoirs is accurate prediction of well deliverability. In this investigation a procedure has been developed for accurate prediction of well production rates using semi-empirical approach. The use of state of the art fine grid numerical simulation is time consuming and computationally demanding, therefore not suitable for real time rapid production management decisions required on site. Development of accurate fit-for-purpose correlations for fluid property prediction below the saturation pressure was a major consideration to properly allow for retrograde condensation, complications of multiphase flow and mobility issues. Previous works are limited to use of experimentally measured pressure, volume, temperature (PVT) property data, together with static relative permeability correlations for simulation of well deliverability. To overcome the above limitations appropriate fluid property correlations required for prediction of well deliverability and dynamic three phase relative permeability correlation have been developed to enable forecasting of these properties at all the desired reservoir conditions The developed correlations include; condensate hybrid compressibility factor, viscosity, density, compositional pseudo-pressure, and dynamic three phase relative permeability. The study made use of published data bases of experimentally measured gas condensate PVT properties and three phase relative permeability data. The developed correlations have been implemented in both vertical and horizontal well models and parametric studies have been performed to determine the critical parameters that control productivity in gas condensate reservoirs, using specific case studies. The improved correlations showed superior performance over existing correlations on validation. The investigation has built on relevant literature to present an approach that modifies the black oil model for accurate well deliverability prediction for condensate reservoirs at conditions normally ignored by the conventional approach. The original contribution to knowledge and practice includes (i) the improved property correlations equations, (4.44, 4.47, 4.66, 4.69, 4.75, 5.21) and (ii) extension of gas rate equations, for condensate rate prediction in both vertical and horizontal wells. Standard industry software, the Eclipse compositional model, E-300 has been used to validate the procedure. The results show higher well performance compared with the industry standard. The new procedure is able to model well deliverability with limited PVT and rock property data which is not possible with most available methods. It also makes possible evaluation of various enhanced hydrocarbon recovery techniques and optimisation of gas condensate recovery.
|
5 |
Gas injection techniques for condensate recovery and remediation of liquid banking in gas-condensate reservoirsHwang, Jongsoo 12 July 2011 (has links)
In gas-condensate reservoirs, gas productivity declines due to the increasing accumulation of liquids in the near wellbore region as the bottom-hole pressure declines below the dew point pressure. This phenomenon occurs even in reservoirs containing lean gas-condensate fluid. Various methods were addressed to remediate the productivity decline, for example, fracturing, gas injection, solvent injection and chemical treatment. Among them, gas injection techniques have been used as options to prevent retrograde condensation by vaporizing condensate and/or by enhancing condensate recovery in gas-condensate reservoirs. It is of utmost importance that the behavior of liquid accumulation near the wellbore should be described properly as that provides a better understanding of the productivity decline due to the originated from impaired relative mobility of gas.
In this research, several gas injection techniques were assessed by using compositional simulators. The feasibility of different methods such as periodic hot gas injection and gas reinjection using horizontal wells were assessed using different reservoir fluid and injection conditions. It is shown that both the temperature and composition of the injection fluids play a key role in the remediation of productivity and condensate recovery. The combined effect of these parameters were investigated and the resulting impact on gas and condensate production was calculated by numerical simulations in this study. Design parameters pertaining to field development and operations including well configuration and injection/production scheme were also investigated in this study along with the above parameters.
Based on the results, guidelines on design issues relating gas injection parameters were suggested. The various simulation cases with different parameters helped with gaining insight into the strategy of gas injection techniques to remediate the gas productivity and condensate recovery. / text
|
6 |
Gas-condensate flow modelling for shale gas reservoirsLabed, Ismail January 2016 (has links)
In the last decade, shale reservoirs emerged as one of the fast growing hydrocarbon resources in the world unlocking vast reserves and reshaping the landscape of the oil and gas global market. Gas-condensate reservoirs represent an important part of these resources. The key feature of these reservoirs is the condensate banking which reduces significantly the well deliverability when the condensate forms in the reservoir below the dew point pressure. Although the condensate banking is a well-known problem in conventional reservoirs, the very low permeability of shale matrix and unavailability of proven pressure maintenance techniques make it more challenging in shale reservoirs. The nanoscale range of the pore size in the shale matrix affects the gas flow which deviates from laminar Darcy flow to Knudsen flow resulting in enhanced gas permeability. Furthermore, the phase behaviour of gas-condensate fluids is affected by the high capillary pressure in the matrix causing higher condensate saturation than in bulk conditions. A good understanding and an accurate evaluation of how the condensate builds up in the reservoir and how it affects the gas flow is very important to manage successfully the development of these high-cost hydrocarbon resources. This work investigates the gas Knudsen flow under condensate saturation effect and phase behaviour deviation under capillary pressure of gas-condensate fluids in shale matrix with pore size distribution; and evaluates their effect on well productivity. Supplementary MATLAB codes are provided elsewhere on OpenAIR: http://hdl.handle.net/10059/2145.
|
7 |
[pt] DESENVOLVIMENTO E APLICAÇÕES DE UM MODELO DE REDE DE POROS PARA O ESCOAMENTO DE GÁS E CONDENSADO / [en] DEVELOPMENT AND APPLICATIONS OF A COMPOSITIONAL PORE-NETWORK MODEL FOR GAS-CONDENSATE FLOWPAULA KOZLOWSKI PITOMBEIRA REIS 19 July 2021 (has links)
[pt] A formação e o acúmulo de condensado em reservatórios de gás retrógrado,
especialmente na vizinhança de poços de produção, obstruem parcialmente
o fluxo de gás e afetam negativamente a composição dos fluidos produzidos.
Entretanto, a previsão de bloqueio por condensado é comumente imprecisa,
visto que experimentos raramente reproduzem as condições extremas e
composições complexas dos fluidos dos reservatórios, enquanto a maioria dos
modelos em escala de poros simplificam demasiadamente os fenômenos físicos
associados à transição de fases entre gás e condensado. Para corrigir essa
lacuna, um modelo de rede de poros isotérmico composicional e totalmente
implícito é apresentado. As redes de poros propostas consistem em estruturas
tridimensionais de capilares constritos circulares. Modos de condensação
e padrões de escoamento são atrubuídos aos capilares de acordo com a molhabilidade
do meio, as saturações locais e a influência de forças viscosas e
capilares. Nos nós da rede, pressão e conteúdo molar são determinados através
da solução acoplada de equações de balanço molar e consistênc ia de volumes.
Concomitantemente, um cálculo de flash à pressão e à temperatura constantes,
baseado na equação de estado de Peng e Robinson, é realizado em cada
nó, atualizando as saturações e composições das fases. Para a validação do
modelo proposto, análises de escoamento foram executadas baseadas em experimentos
de escoamento em testemunho reportados na literatura, usando
composição dos fluidos e condições de escoamento correspondentes, e geometria
do meio poroso aproximada. Curvas de permeabilidade relativa medidas
nos experimentos e previstas pelo modelo mostraram boa concordância quantitativa,
para dois valores de tensão interfacial e três valores de velocidade de
escoamento de gás. Após a validação, o modelo foi usado para avaliar alteração
de molhabilidade e injeção de gás como possíveis métodos de recuperação avançada
para reservatórios de gás retrógrado. Os resultados exibiram tendências
similares àquelas observadas em experimentos de escoamento em testemunhos,
e condições ótimas para melhoramento do escoamento foram identificadas. / [en] Liquid dropout and accumulation in gas-condensate reservoirs, especially
in the near wellbore region, hinder gas flow and affect negatively the produced
fluid composition. Yet, condensate banking forecasting is commonly inaccurate,
as experiments seldom reproduce reservoir extreme conditions and complex
fluid composition, while most pore-scale models oversimplify the physical
phenomena associated with phase transitions between gas and condensate. To
address this gap, a fully implicit isothermal compositional pore-network model
for gas and condensate flow is presented. The proposed pore-networks consist
of 3D structures of constricted circular capillaries. Condensation modes and
flow patterns are attributed to the capillaries according to the medium s wettability,
local saturations and influence of viscous and capillary forces. At the
network nodes, pressure and molar contents are determined via the coupled
solution of molar balance and volume consistency equations. Concomitantly, a
PT-flash based on the Peng-Robinson equation of state is performed for each
node, updating the local phases saturations and compositions. For the proposed
model validation, flow analyses were carried out based on coreflooding
experiments reported in the literature, with matching fluid composition and
flow conditions, and approximated pore-space geometry. Predicted and measured
relative permeability curves showed good quantitative agreement, for two
values of interfacial tension and three values of gas flow velocity. Following
the validation, the model was used to evaluate wettability alteration and gas
injection as prospect enhanced recovery methods for gas-condensate reservoirs.
Results exhibited similar trends observed in coreflooding experiments and conditions
for optimal flow enhancement were identified.
|
8 |
[en] REPRESENTATION OF RETROGRADE CONDENSATION: FROM DIGITAL PETROPHYSICS IN MICRO-PORES TO SIMULATION AT FIELD SCALE / [pt] REPRESENTAÇÃO DA CONDENSAÇÃO RETRÓGRADA: DA PETROFÍSICA DIGITAL EM MICROPOROS À SIMULAÇÃO EM ESCALA DE CAMPOMANOELA DUTRA CANOVA 23 January 2024 (has links)
[pt] Campos de petróleo com gás não associado do tipo gás condensado possuem
destaque pelo maior valor econômico agregado associado a seu recurso energético:
a expressiva quantidade de condensado produzida, além do próprio gás. Porém, tais
reservatórios possuem um comportamento termodinâmico particular, induzindo
mudanças de composição e, consequentemente, fase ao longo do processo de
produção por depleção. Nas condições de reservatório, por exemplo, pode ocorrer
o fenômeno chamado de condensate blockage, em que bancos de condensado se
formam, geralmente em regiões próximas aos poços, dificultando assim o
escoamento e afetando a produção de gás.
A fim de definirmos a melhor estratégia de gerenciamento de um projeto a
ser implementado ao longo da explotação desse tipo de reservatório, uma
ferramenta importante utilizada pelos engenheiros é a simulação numérica.
Especialmente relacionadas à representação do fenômeno físico-químico citado,
nas simulações se utilizam as curvas de permeabilidade relativa. Na realidade,
porém, existe uma certa limitação de representatividade do fenômeno nos ensaios
laboratoriais praticados pela indústria e os melhores insumos poderiam ser
fornecidos por simulações em rede de poros, com modelos que representem a sua
alteração com função das mudanças na tensão interfacial e na velocidade de
escoamento ao longo do reservatório.
A reprodução de uma simulação de escoamento em rede de poros para a
escala mais próxima possível em uma simulação de simulador comercial de
diferenças finitas é validada. Da simulação em rede de poros até a escala de campo
praticada nas simulações de reservatórios, uma metodologia de scale-up é proposta,
utilizando um processo de otimização, procurando ser fiel à curva de
permeabilidade relativa original, em escala de microporo, obtida simulando
fenomenologicamente o processo de condensação no reservatório, através de um
modelo que reproduza sua dependência com a velocidade desenvolvida pelas fases
em meio poroso.
A comparação de produtividades na escala de campo e na evolução da
saturação de condensado em regiões próximas aos poços foi apresentada para as
três curvas de permeabilidade relativa utilizadas. Os resultados mostram que a
metodologia proposta consegue ser mais fiel à influência da condensação no
reservatório sobre a produtividade dos poços quando comparada ao insumo de
curva de permeabilidade relativa de ensaio laboratorial que apresenta o condensado
mais móvel. / [en] Oil fields with non-associated gas like gas condensate type stand out due to
the higher added economic value associated with their energy resource: the
significant amount of condensate produced, in addition to the gas itself. However,
such reservoirs have a particular thermodynamic behavior, inducing changes in
composition and, consequently, phase throughout the depletion production process.
Under reservoir conditions, for example, the phenomenon called condensate
blockage may occur, in which bridges of condensate are formed, usually in regions
close to the wells, thus hindering flow and affecting gas production.
In order to define the best management strategy for a project to be
implemented throughout the exploitation of this type of reservoir, an important tool
used by engineers is numerical simulation. The relative permeability curves are
used in the simulations, especially related to the representation of the mentioned
physical phenomenon. In reality, however, there is a specific limitation of
representativeness of the phenomenon in the laboratory tests carried out by the
industry, and the best inputs could be provided by simulations in a pore network,
with models that represent its alteration as a function of changes in interfacial
tension and flow velocity along the reservoir.
The reproduction of a pore network flow simulation to the closest possible
scale in a commercial finite difference simulation is validated. From the pore
network simulation to the field scale practiced in reservoir simulations, a scale-up
methodology is proposed, using an optimization process, seeking to be faithful to
the original relative permeability curve, on a microporous scale, obtained by
simulating phenomenologically the condensation process in the reservoir, using a
model that reproduces its dependence on the velocity flow developed by the phases
in a porous medium.
The three relative permeability curves used were presented by comparing
productivities at the field scale and the evolution of condensate saturation in regions
close to the wells. The results show that the proposed methodology proves to be
more faithful to the influence of condensation in the reservoir on the productivity
of the wells when compared to the relative permeability curve input from the
laboratory test, which presents the condensate with more mobility.
|
Page generated in 0.0373 seconds