• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 159
  • 22
  • 15
  • 12
  • 11
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 431
  • 431
  • 106
  • 106
  • 94
  • 88
  • 85
  • 71
  • 62
  • 48
  • 46
  • 45
  • 41
  • 40
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Flow and combustion characteristics of model annular and can-type combustors

Tse, David Gar Nile January 1988 (has links)
No description available.
42

Stability Limits and Exhaust Emissions from Ammonia Flames in a Swirl Combustor at Elevated Pressures

Khateeb, Abdulrahman A. 11 1900 (has links)
Intimate knowledge of ammonia fueling gas turbines is of crucial importance for power generation sectors, owing to its carbon-free nature and high hydrogen capacity. Anticipated challenges include, among others, the difficulty to stabilize ammonia flames and on top of that the propensity of ammonia flames to produce large quantities of nitrogen monoxide emissions. In gas turbine devices, combustion in practice occurs in a turbulent swirl flow and at elevated pressure conditions. The stability of ammonia flames and the production of NO emissions are sensitive to such parameters. This body of work focuses on the development of a swirl combustor, ~30kW thermal power, for investigating behaviors of flame stability limits and NO emissions from the combustion of ammonia fuel with mixtures of hydrogen or methane at pressure conditions up to 5 bar. Data show that increasing the ammonia addition increases the equivalence ratio at the lean blowout limit but also reduces the flames’ propensity to flashback. If the volume fraction of ammonia in the fuel blend exceeds a critical value, increasing the equivalence ratio at a fixed bulk velocity does not yield flashback and rich blow-out occurs instead. This significantly widens the range of equivalence ratios yielding stable ammonia flames. Regardless of the fuel blend, increasing the pressure increases the propensity to flashback if the bulk velocity remains constant. Pure ammonia-air flames are stable under elevated pressures, and the stable range of equivalence ratio becomes wider as the pressure increases. The NO emissions are measured for large ranges of equivalence ratios, ammonia fractions, and pressures. Regardless of the ammonia fraction, data show that competitively low NO emissions can be found for slightly rich equivalence ratios. Good NO performance is also found for very lean ammonia-hydrogen-air mixtures, regardless of the pressure. NO mole fractions for lean ammonia mixtures can be reduced as pressure increases, demonstrating the strong potential of fueling gas turbines with ammonia-hydrogen mixtures.
43

Design, Analysis, and Development of a Tripod Film Cooling Hole Design for Reduced Coolant Usage

Leblanc, Christopher N. 17 December 2012 (has links)
This research has a small portion focused on interior serpentine channels, with the primary focus on improving the effectiveness of the film cooling technique through the use of a new approach to film cooling. This new approach uses a set of three holes sharing the same inlet and diverging from the central hole to form a three-legged, or tripod, design. The tripod design is examined in depth, in terms of geometric variations, through the use of flat plate and cascade rigs, with both transient and steady-state experiments. The flat plate tests provide a simplified setting in which to test the design in comparison to other geometries, and establish a baseline performance in a simple flow field that does not have the complications of surface curvature or mainstream pressure gradients. Cascade tests allow for testing of the design in a more realistic setting with curved surfaces and mainstream pressure gradients, providing important information about the performance of the design on suction and pressure surfaces of airfoils. Additionally, the cascade tests allow for an investigation into the aerodynamic penalties associated with the injection hole designs at various flow rates. Through this procedure the current state of film cooling technology may be improved, with more effective surface coverage achieved with reduced coolant usage, and with reduced performance penalties for the engine as a whole. This research has developed a new film hole design that is manufacturable and durable, and provides a detailed analysis of its performance under a variety of flow conditions. This cooling hole design provides 40% higher cooling effectiveness while using 50% less coolant mass flow. The interior serpentine channel research provides comparisons between correlations and experiments for internal passages with realistic cross sections. / Ph. D.
44

The Effect of Fuel Injector Geometry on the Flow Structure of a Swirl Stabilized Gas Turbine Burner

Anning, Grant Hugh Gary 24 September 2002 (has links)
No description available.
45

Aerodynamics and Heat Transfer for a Modern Stage and One-Half Turbine

Krumanaker, Matthew Lee 05 February 2003 (has links)
No description available.
46

Predictions and Measurements of Film-Cooling on the Endwall of a First Stage Vane

Knost, Daniel G. 15 October 2003 (has links)
In gas turbine development, the direction has been toward higher turbine inlet temperatures to increase the work output and thermal efficiency. This extreme environment can significantly impact component life. One means of preventing component burnout in the turbine is to effectively use film-cooling whereby coolant is extracted from the compressor and injected through component surfaces. One such surface is the endwall of the first stage nozzle guide vane. This thesis details the design, prediction, and testing of two endwall film-cooling hole patterns provided by leading gas turbine engine companies. In addition a flush, two-dimensional slot was included to simulate leakage flow from the combustor-turbine interface. The slot coolant was found to exit in a non-uniform manner leaving a large, uncooled ring around the vane. Film-cooling holes were effective at distributing coolant throughout much of the passage, but at low blowing rates were unable to provide any benefit to the critical vane-endwall junction both at the leading edge and along the pressure side. At high blowing ratios, the increased momentum of the jets induced separation at the leading edge and in the upstream portion of the passage along the pressure side, while the jets near the passage exit remained attached and penetrated completely to the vane surface. Computational fluid dynamics (CFD) was successful at predicting coolant trajectory, but tended to under-predict thermal spreading and jet separation. Superposition was shown to be inaccurate, over-predicting effectiveness levels and thus component life, because the flow field was altered by the coolant injection. / Master of Science
47

Effects of Sand Ingestion on the Cooling of Turbine Blade Outer Air Seals

Land, Camron C. 20 December 2006 (has links)
Modern gas turbine engines operate in environments where particle ingestion, especially sand ingestion, can affect the cooling of various turbine parts. The most critical areas are in the combustor and the first stage components of the turbine. Gas temperatures in these areas are the highest compared to other areas and exceed the melting points of the constituent metals. To extend the life of hot section components, internal convective cooling and external film-cooling are required. This study examined the effects of sand ingestion on various cooling geometries. The first part investigated impingement and film-cooling implemented in a double-walled cooling geometry for the purpose of reducing sand size and thereby reducing blockage due to sand ingestion. The second part analyzed the cooling performance of actual turbine blade outer air seals injected with sand. Results from these studies showed areas of impingement that promote particle fragmentation are advantageous in reducing particle size and reducing blockage due to particle ingestion. Blockage was significantly increased based on the percentage of large particles present in the sand samples. Increasing the pressure ratio and decreasing the sand amount were also shown to reduce blockage. / Master of Science
48

Parametric Investigation of the Combustor-Turbine Interface Leakage Geometry

Knost, Daniel G. 21 October 2008 (has links)
Engine development has been in the direction of increased turbine inlet temperatures to improve efficiency and power output. Secondary flows develop as a result of a near-wall pressure gradient in the stagnating flow approaching the inlet nozzle guide vane as well as a strong cross-passage gradient within the passage. These flow structures enhance heat transfer and convect hot core flow gases onto component surfaces. In modern engines it has become critical to cool component surfaces to extend part life. Bypass leakage flow emerging from the slot between the combustor and turbine endwalls can be utilized for cooling purposes if properly designed. This study examines a three-dimensional slot geometry, scalloped to manipulated leakage flow distribution. Statistical techniques are used to decouple the effects of four geometric parameters and quantify the relative influence of each on endwall cooling levels and near-wall total pressure losses. The slot geometry is also optimized for robustness across a range of inlet conditions. Average upstream distance to the slot is shown to dominate overall cooling levels with nominal slot width gaining influence at higher leakage flow rates. Scalloping amplitude is most influential to near-wall total pressure loss as formation of the horseshoe vortex and cross flow within the passage are affected. Scalloping phase alters local cooling levels as leakage injection is shifted laterally across the endwall. / Ph. D.
49

Effects of Surface Conditions on Endwall Film-Cooling

Sundaram, Narayan 26 April 2007 (has links)
A higher demand in power output from modern land based gas turbines has resulted in an increase in combustor exit temperatures. High temperatures in turn have resulted in flatter profiles at the combustor exit warranting the need for sufficient cooling of the endwall region. Endwall cooling is affected by the coolant flow through certain design features. A typical endwall design includes a leakage slot at the interface between the combustor and the vane, a leakage slot at the vane-to-vane interface and film-cooling holes. In addition, with the increase in energy demands and depletion of natural gas resources, alternate fuels such as coal derived synthetic gas are being used in gas turbines. Coal derived fuels, however, contain traces of ash and other contaminants that deposit on endwall surfaces, thereby altering its surface conditions. The purpose of this study was to investigate the effects of realistic endwall features and surface conditions on leading edge endwall cooling. Endwall designs like placing film-cooling holes in a trench, which provide an effective means of improving cooling were also studied at the leading edge. An infrared camera was used to obtain measurements of adiabatic effectiveness levels and a laser Doppler velocimeter was used for flowfield measurements. This study was done on a large scale, low-speed, recirculating wind tunnel operating at a Reynolds number of 2.1e+5 and an inlet mainstream turbulence level of 1%. Endwall measurements were taken for coolant flow through varying slot width at the combustor-vane interface. A constant coolant mass flow and a narrower combustor-turbine interface slot caused the coolant to exit uniformly whereas increasing the slot width had an opposite effect. Measurements were also taken with hole blockage and spallation, which showed a 10-25% decrease in the effectiveness levels whereas near hole deposition showed a 20% increase in effectiveness levels. A comparison of the cooling effectiveness due to placement of film-cooling holes in a trench was made to film-cooling holes not placed in a trench. Measurements indicated a superior performance of trenched holes to holes without a trench. Trenched holes showed a 60% increase in effectiveness levels due to decreased coolant jet separation. / Ph. D.
50

Effects of Sand Ingestion on the Film-Cooling of Turbine Blades

Walsh, William Scott 21 September 2005 (has links)
Gas turbine engines for propulsion operate under harsh conditions including gas temperatures that exceed the melting point of the metal, high mechanical stresses, and particulate ingestion such as sand. To maintain a low and uniform metal temperature to extend the life of a turbine component, a complex scheme of internal convective cooling and external film-cooling is required. Gas turbine engines operated in sandy or dusty environments can ingest a large quantity of sand into the mainstream and, more importantly, into the cooling system. Sand ingested into the coolant system has the potential to reduce or block off the flow intended to cool the turbine blades or vanes. If the source of coolant air to a critical region of a turbine blade were partially blocked, it would result in a substantial reduction in component life. This study includes establishing a methodology for testing sand ingestion characteristics on a simulated turbine component with film-cooling holes at room temperature and engine temperatures. The study evaluates a simple array of laser drilled film-cooling holes, similar to a showerhead on the leading edge of an airfoil. The blocking characteristics of this design indicate that increasing the airflow or decreasing the sand amount results in a decreased blockage. It was also determined that as the metal temperature increases, the blockage from a given amount of sand increases. The methodology used in the primary portion of this thesis was modified to test sand ingestion characteristics on actual turbine blades with film-cooling holes at room temperature and engine temperatures. The study evaluated the blockage performance of several different turbine blades including the F-100-229-full, F-100-229-TE, and the F-119 with a new trailing edge cooling methodology know as a microcircuit. It was shown that increasing the airflow or pressure ratio, or decreasing the sand amount would result in decreased blockage. It was also shown that over a certain metal and coolant temperature, the blockage is significantly worsened. However, it was also shown on the F-119 turbine blade that below a given metal temperature, there is no impact of metal or coolant temperature on sand blockage. / Master of Science

Page generated in 0.0549 seconds