Spelling suggestions: "subject:"[een] GENOMICS"" "subject:"[enn] GENOMICS""
341 |
BSN Students’ Knowledge of Genetics and GenomicsBesse, Kevin Troy January 2014 (has links)
No description available.
|
342 |
Genome-wide variation in the distribution of transposable and repetitive elements in the Western Clawed Frog (Silurana tropicalis)Shen, Jiangshan J. 10 1900 (has links)
<p>Repetitive elements, including tandem repeats and transposable elements (TE), are genetic features of all plant and animal genomes. Despite their abundance and the phylogenetic breadth of host genomes, factors that control the genome-wide distribution of repetitive elements are not well understood. Here we have evaluated the correlation between various genomic predictor variables such as gene expression level, distance from genes, and GC content, with the presence of TEs and non-TE repeats in two kilobase windows of the complete genome sequence of the Western Clawed Frog (<em>Silurana tropicalis</em>). We found that the distributions of different classes of TEs and repeats have distinct correlations with these predictor variables, including a generally strong negative correlation with proximity to exons and GC content. We also found that DNA transposons, but not retrotransposons, are preferentially inserted or preferentially retained near germline-expressed genes. Retrotransposons and simple repeats are found more often in or near conserved regions than expected by chance. These results offer insights into various models that have been proposed to account for heterogeneity in the genomic distribution of repetitive elements, most notably for the “gene disruption model” which posits that TE insertion and repeat presence near or in genes imposes costs to host fitness. In general, multiple lines of evidence suggests that the nature of natural selection on TE and other repetitive element evolution in this frog appears to be similar to that acting on TE and other repetitive elements in the human genome. This is possibly related to the similar size and level of complexity of the genomes of both of these species.</p> / Master of Science (MSc)
|
343 |
Bioflow: A web based workflow management system for design and execution of genomics pipelinesPuthige, Ashwin Acharya 11 January 2014 (has links)
The cost required for the process of sequencing genomes has decreased drastically in the last few years. The knowledge of full genomes has increased the pace of the advancements in the field of functional genomics. Computational genomics, which analyses these sequences, has seen a similar growth. The multitude of sequencing technologies has resulted in various formats for storing the sequences. This has resulted in the creation of many tools for DNA analysis. There are various tools for sorting, indexing, analyzing read groups and other tasks. The analysis of genomics often requires the creation of pipelines, which processes the DNA sequences by chaining together many tools. This results in the creation of complex scripts that glue together these tools and pass the output from one stage to the other. Also, there are tools which allow creation of these pipelines with a graphical user interface. But these are complex to use and it is difficult to quickly add the new tools being developed to existing workflows.
To solve these issues, we developed BioFlow; a web based genomic workflow management system. The use of BioFlow does not require any programming skills. The integrated workflow designer allows creation and saving workflows. The pipeline is created by connecting the tools with a visual connector. BioFlow provides an easy and simple interface that allows users to quickly add tools for use in any workflow. Audit logs are maintained at each stage, which helps users to easily identify errors and fix them. / Master of Science
|
344 |
Conservation Genetic Analysis of Spotted Turtles (<i>Clemmys </i><i>guttata</i>) Across the Western Portion of Their RangeElyse Christine Mallinger (19200163) 23 July 2024 (has links)
<p dir="ltr">Spotted Turtle (Clemmys guttata) populations are declining dramatically across their range primarily due to habitat alteration, fragmentation, and reduction. Fragmented habitats have the potential to affect a population’s genetic diversity and size through the direct loss of individuals and the reduction of gene flow. Understanding genetic variation in Spotted Turtles can provide insight into population dynamics, the geographic distribution of genetic variants, and conservation needs. I examined the genetic variation in Spotted Turtle populations across the western portion of their geographic range including localities in Illinois, Indiana, Ohio, Michigan, and Ontario, Canada. Using blood samples collected during the 2022 and 2023 field seasons as well as previously collected tissues, I genotyped 611 individuals across 17 or more localities using 16 microsatellite loci. Five of 17 sites across the geographic extent of the sample suggested the presence of inbreeding (positive Fis values). Although the precision of estimates was low in most localities (10 of 17 with incalculable confidence intervals), the remaining localities in Ohio were estimated to have effective population sizes of < 20 individuals. Model-based and ordination-based clustering were conducted to assess population structure. Both types of clustering approaches identified four genetic clusters within the dataset. The two Illinois sites fell distinctly into their own cluster, whereas all other sites show a pattern of admixture. Despite these clustering results, incorporation of spatial information in principal component analysis (sPCA), shows that genetic composition gradually changes from west to east across the landscape, a pattern supported by isolation by distance using a Mantel test of the correlation between genetic and geographic distances. My results show that several Spotted Turtle populations have low levels of genetic variation and could benefit from augmentation. The observed pattern of isolation by distance 9 suggests that any translocations of turtles to support populations should be attempt to draw from viable populations that are in closer proximity.</p>
|
345 |
<b>Genomic background of calf resilience and milk feeding traits based on automated feeder data in Holstein cattle</b>Jason Robert Graham (19212595) 28 July 2024 (has links)
<p dir="ltr">In this dissertation, we investigated the genetic background of milk consumption, feeding behavior, disease resistance, and calf resilience in North American Holstein dairy calves using precision livestock farming (PLF) technologies and genetic modeling. Genomic and phenotypic information obtained from automatic milk feeding machines were obtained from 10,072 pre-weaned Holstein calves and used to derive and genetically evaluate novel traits such as daily milk consumption, calf resilience, and incidence of bovine respiratory disease (BRD). Heritability estimates for milk consumption and feeding behavior traits were found to be low but improved with specific statistical models, suggesting potential for genetic improvement if included in selection schemes. Random regression models captured greater amounts of genetic variability among calves for longitudinal milk feeding and behavior traits, with moderate negative (favorable) genetic correlations between milk consumption and BRD, indicating potential for genetic selection to enhance calf health outcomes and performance based on milk intake data. Various quantitative trait loci (QTL) for milk consumption, drinking duration traits, feeding behavior, and disease susceptibility were identified, linking key genes involved in metabolic processes, growth, and overall health. The same datasets were used to derive resilience indicators based on cumulative milk consumption. Genetic parameters for resilience traits, including amplitude, perturbation time, and recovery time, were estimated, highlighting substantial phenotypic and genetic variability. Significant genomic regions for six resilience traits were identified, with key genes such as <i>ABCB8</i>,<i> ABCF2</i>, and <i>AGAP3</i> linked to resilience traits, impacting mitochondrial function, cellular stress responses, and homeostasis. Pathway analyses revealed critical biological processes for stress response, including nucleotide binding and hormone activity. Genes such as <i>EPC1</i>, <i>ASB10</i>, and <i>ASIC3</i> were associated with recovery time, while <i>DPP6</i>, <i>GBX1</i>, and <i>GIMAP5</i> were linked to other resilience traits. These findings underscore the importance of genetic tools and breeding strategies in enhancing health, resilience, and productivity, offering potential new traits to genetically improve health and resilience in dairy cattle, and consequently, improve the sustainability of the dairy cattle industry.</p>
|
346 |
Identification of Forensically Relevant Coding Region SNPs from RNA-seq DataYu, Alice S 01 January 2024 (has links) (PDF)
This study explores the use of coding-region, forensically-relevant single nucleotide polymorphisms (SNPs) from RNA sequencing data. SNPs present distinct advantages over short tandem repeat (STR) typing, particularly in niche scenarios, such as in samples with low-quantity DNA templates or in degraded samples with substantially fragmented DNA. While RNA is susceptible to rapid ex-vivo degradation, mRNA has demonstrated unexpected stability in dried body fluid stains, contingent upon the storage conditions. This paper presents a pipeline designed to identify forensically relevant coding region single nucleotide polymorphisms (cSNPs) from RNA-seq data.
The forensically relevant cSNPs utilized in this study were sourced from a previously published paper that identified a panel of 35 body fluid-specific cSNPs. Our pipeline demonstrated effectiveness in identifying forensically relevant cSNPs across various tissue categories. However, the final analysis raises concerns about the overall specificity of this panel of cSNPs and issues with cross-reactivity for different body fluids.
Overall, this study contributes to the advancement of forensic genetics by providing a robust and standardized pipeline for identifying cSNPs from RNA-seq data. While further evaluation and optimization are necessary, the demonstrated efficacy of this pipeline holds promise for enhancing genetic profiling in forensic contexts.
|
347 |
A BAC library of the SP80-3280 sugarcane variety (saccharum sp.) and its inferred microsynteny with the sorghum genomeFigueira, Thais Rezende, Okura, Vagner, Rodrigues, da Silva, Jose, da Silva, Kudrna, Dave, Ammiraju, Jetty, Talag, Jayson, Wing, Rod, Arruda, Paulo January 2012 (has links)
BACKGROUND:Sugarcane breeding has significantly progressed in the last 30 years, but achieving additional yield gains has been difficult because of the constraints imposed by the complex ploidy of this crop. Sugarcane cultivars are interspecific hybrids between Saccharum officinarum and Saccharum spontaneum. S. officinarum is an octoploid with 2n=80 chromosomes while S. spontaneum has 2n=40 to 128 chromosomes and ploidy varying from 5 to 16. The hybrid genome is composed of 70-80%S. officinaram and 5-20%S. spontaneum chromosomes and a small proportion of recombinants. Sequencing the genome of this complex crop may help identify useful genes, either per se or through comparative genomics using closely related grasses. The construction and sequencing of a bacterial artificial chromosome (BAC) library of an elite commercial variety of sugarcane could help assembly the sugarcane genome.RESULTS:A BAC library designated SS_SBa was constructed with DNA isolated from the commercial sugarcane variety SP80-3280. The library contains 36,864 clones with an average insert size of 125 Kb, 88% of which has inserts larger than 90 Kb. Based on the estimated genome size of 760-930 Mb, the library exhibits 5-6 times coverage the monoploid sugarcane genome. Bidirectional BAC end sequencing (BESs) from a random sample of 192 BAC clones sampled genes and repetitive elements of the sugarcane genome. Forty-five per cent of the total BES nucleotides represents repetitive elements, 83% of which belonging to LTR retrotransposons. Alignment of BESs corresponding to 42 BACs to the genome sequence of the 10 sorghum chromosomes revealed regions of microsynteny, with expansions and contractions of sorghum genome regions relative to the sugarcane BAC clones. In general, the sampled sorghum genome regions presented an average 29% expansion in relation to the sugarcane syntenic BACs.CONCLUSION:The SS_SBa BAC library represents a new resource for sugarcane genome sequencing. An analysis of insert size, genome coverage and orthologous alignment with the sorghum genome revealed that the library presents whole genome coverage. The comparison of syntenic regions of the sorghum genome to 42 SS_SBa BES pairs revealed that the sorghum genome is expanded in relation to the sugarcane genome.
|
348 |
Systems analysis of the dynamic macrophage response to productive and non-productive murine cytomegalovirus infectionLacaze, Paul Andrew January 2011 (has links)
The mammalian immune system is capable of detecting and responding to different infectious conditions with specificity at the adaptive level, however whether this ability extends to individual cells of the innate immune system is unclear. The hypothesis of this thesis is that macrophages, as individual cells, can distinguish between productive and non-productive virus infections and respond differently at the gene expression and secreted protein level. To test the hypothesis, mouse bone marrow derived macrophages (BMDMs) were infected in parallel with either a productive (live) and non-productive (attenuated) strain of murine cytomegalovirus (MCMV) and profiled temporally using a range of techniques. Both productive and non-productive MCMV infection resulted in strong type I IFN induction in BMDMs, however induction was significantly more rapid in response to productive infection. In addition, chemoattractant and pro-inflammatory cytokines TNFα, IL-6, RANTES, MIG and MIP-2 were secreted to significantly higher levels in response to productive MCMV infection, and curtailed in response to non-productive MCMV infection. Furthermore, genome-wide microarray profiling revealed a number of co-expressed gene networks regulated differentially in response to the two conditions. This consisted of macrophage gene networks targeted for modulation by de novo MCMV proteins, and late macrophage response genes regulated specifically in response to productive MCMV infection. To further explore the mechanisms of transcriptional regulation during macrophage antiviral response, BMDMs from mice lacking either the type I IFN receptor (Ifnar1) or the IFNβ (Ifnb1) gene were profiled using a similar approach. The resulting genome-wide transcriptional data provided a unique insight into the relationship between type I IFN regulation and the macrophage transcriptome in response to MCMV infection. Overall, the study utilizes a combination of genetic mutants from both host and pathogen to investigate mechanisms of virus detection and host transcriptional regulation during the innate immune response to MCMV infection in macrophages.
|
349 |
The study of environmental adaptability of laribacter hongkongensis bygenomic and proteomic approachCurreem, Oi-ting, Shirly., 嘉藹庭. January 2009 (has links)
published_or_final_version / Microbiology / Doctoral / Doctor of Philosophy
|
350 |
Cellular and molecular aspects of the interaction betwen maize and the anthracnose pathogen Colletotrichum graminicolaTorres, Maria F. 01 January 2013 (has links)
Maize anthracnose, caused by the fungus Colletotrichum graminicola, is an economically important species contributing to major yield losses. C. graminicola is a hemibiotroph; initially it invades its host while it is alive, and then it switches to destructive necrotrophic growth and the host is killed. Establishment of compatible interactions by biotrophic pathogens is usually associated with suppression of host defenses and cell death, while necrotrophic pathogens typically secrete phytotoxic compounds and induce cell death. To understand the relationship of hemibiotrophy in C. graminicola to biotrophy and necrotrophy, I compared a compatible and an incompatible interaction, utilizing a non-pathogenic mutant strain that is very similar to the wild type in vitro. I developed an assay to visualize in detail living fungal and host cells during pathogenic and nonpathogenic interactions. My results provided evidence that C. graminicola produces diffusible substances during colonization that predispose nearby living host cells for fungal invasion. My observations further suggested that the mutant is nonpathogenic because it fails to produce these substances. To explore the possibility that the C. graminicola mutant is impaired in the production and/or secretion of one or more secondary metabolites (SM), I characterized the range of SM-associated genes in C. graminicola. C. graminicola has a large and diverse repetoire of these genes, indicating significant capacity for the production of SM. I then characterized the global expression of fungal genes during different developmental phases in both compatible and incompatible interactions. I found that SM-associated genes are expressed during early and late stages of maize infection. Secreted proteins and putative effectors were overrepresented among differentially regulated predicted gene products. There were relatively few differences in expression between the mutant and wild type, suggesting that differences between them may relate to post-transcriptional events. The transcriptional analysis indicated that the mutant was defective very early in biotrophy. This study indicates that biotrophy and necrotrophy coexist in this pathosystem in different cells, and that arrays of differentially regulated and locally expressed genes are involved in maintaining this balance. Understanding the nature of induced susceptibility may lead to new therapeutic targets for management of this damaging disease.
|
Page generated in 0.0487 seconds