Spelling suggestions: "subject:"[een] GEOLOGIC FAULTS"" "subject:"[enn] GEOLOGIC FAULTS""
1 |
[pt] MODELAGEM NUMÉRICA EM ELEMENTOS FINITOS PARA CARACTERIZAÇÃO DE ZONAS DE DANO EM FALHAS GEOLÓGICAS / [en] NUMERICAL MODELING USING THE FINITE ELEMENT METHOD FOR CHARACTERIZATION OF FAULT DAMAGE ZONESKAROLINE NUNES OLIVEIRA 24 July 2023 (has links)
[pt] Zonas de falha são estruturas geológicas usualmente presentes em subsuperfície. Na indústria de óleo e gás, tais estruturas podem trazer diferentes impactos, tanto no comportamento geomecânico dos campos quanto na produção nos reservatórios. Em geral, as zonas de falha são compostas pelo núcleo e pela zona de dano. O núcleo é responsável pela compartimentalização de reservatórios atuando como barreira para a passagem de fluidos. A zona de dano, região de rocha deformada adjacente ao núcleo, pode ter um impacto direto na produção, criando caminhos de fluxo preferencial ou barreiras, dependendo das feições geológicas formadas no processo de deformação. Enquanto o núcleo pode ser caracterizado com larguras da ordem de centímetros a alguns metros, as larguras das zonas de dano são uma grande incerteza. Este trabalho apresenta uma metodologia para a modelagem numérica da geração de zonas de dano. A metodologia é baseada no método de elementos finitos, em modelos constitutivos elastoplásticos representativos do comportamento geomecânico de rochas, e na aplicação de deslocamentos prescritos (rejeito) para simular o processo de formação da falha. Diversos cenários são analisados considerando o impacto dos parâmetros geomecânicos das rochas e as distâncias relativas entre duas falhas na definição das zonas de dano. Em seguida, a metodologia é utilizada para a análise de regiões favoráveis à trajetória de um poço de produção localizado entre três falhas geológicas. Os resultados obtidos demonstram que a metodologia proposta pode servir como base para caracterizar as zonas de dano em falhas geológicas. / [en] Fault zones are geological structures usually present in subsurface. In the oil and gas industry, such structures can have different impacts on geomechanical behavior and on reservoir production. In general, fault zones are composed by a core and a damage zone. The core is responsible for the compartmentalization of reservoirs, acting usually as a barrier for fluid flow. The damage zone is the region of rock deformed adjacent to the core that may directly impact on production, creating preferential flow paths or barriers, depending on the geological features triggered in the deformation process. While the core width can be in the order of centimeters to a few meters, the damage zone width is uncertain. This work presents a methodology for numerical modeling of the generation of damage zones. The methodology is based on finite element method, elastoplastic constitutive models representative of the geomechanical behavior of rocks, and on the application of prescribed displacements to simulate the fault formation process. Several scenarios are analyzed considering the impact of the geomechanical parameters of rocks and the relative distances between two faults to characterize the damage zones. Then, the methodology is used to analyze regions favorable to the trajectory of a production well located between three geological faults. The obtained results demonstrate that the proposed methodology can serve as a basis for characterizing damage zones in geological faults.
|
2 |
[en] COMPUTATIONAL MODELING OF THE FORMATION AND EVOLUTION OF DAMAGE ZONES IN GEOLOGICAL FAULTS / [pt] MODELAGEM COMPUTACIONAL DE FORMAÇÃO E EVOLUÇÃO DE ZONAS DE DANO EM FALHAS GEOLÓGICASTHIAGO JUVENCIO DE ANDRADE 13 September 2021 (has links)
[pt] As zonas de falha são compostas por um núcleo, onde a maior parte da deformação é acomodada, e uma zona de dano, com deformação menos intensa. A zona de dano pode atuar como caminho de fluxo preferencial devido à presença de fraturas, ou como barreira devido às bandas de deformação. Portanto, sua caracterização é essencial para a adoção de estratégias de produção adequadas em campos de petróleo. Os métodos geofísicos geralmente utilizados, porém, dificilmente permitem a identificação das zonas de dano devido à baixa resolução sísmica. Como alternativa, empregam-se observações em afloramentos superficiais. Contudo, há uma grande dispersão de dados, que pode estar relacionada a uma variedade de fatores, como as propriedades da rocha protólita e os mecanismos de deformação atuantes. Neste sentido, este trabalho apresenta duas metodologias baseadas no método dos elementos finitos (MEF) para analisar a formação e evolução das zonas de dano em escala de reservatório. Na primeira abordagem, a zona de falha é totalmente representada através de um meio contínuo, enquanto que na segunda, a falha é representada como um plano por meio de uma descontinuidade. Em ambas aproximações, a zona de dano é estabelecida através das regiões plastificadas. Os resultados numéricos obtidos se aproximaram das observações de campo e possibilitaram a identificação das vantagens e limitações das duas abordagens baseadas no MEF. Por fim, os resultados também permitiram identificar os principais parâmetros geomecânicos que influenciam o desenvolvimento das zonas de dano, bem como os diferentes mecanismos de deformação que ocorrem ao longo da zona de dano. / [en] Fault zones are composed of two structural domains: the fault core, which accommodates most of the deformation, and a damage zone, with less intense deformation. The damage zone may act as a preferential flow path due to the presence of fractures, or as a barrier due to deformation bands. Therefore, the characterization of geological fault zones is essential for the adoption of adequate production strategies in oil fields. Generally, geophysical methods are used to characterize geological faults in the field. However, they hardly allow the identification of damage zones due to low seismic resolution. Alternatively, damage zones are analyzed through surface outcrops. Nonetheless, there is a wide dispersion of data in this type of study, which may be related to various factors, such as the properties of the host rock and the acting deformation mechanisms. Therefore, it is interesting to carry out this type of study in conjunction with numerical modeling to understand better the damage zone formation process. In this study, we present two methodologies based on the finite element method (FEM) to analyze the formation and evolution of damage zones at a reservoir scale. In the first methodology, the entire fault zone is represented through a continuum medium, while in the second methodology, the fault core is represented as a plane through a discontinuity. In both approaches, the damage zone is defined through the regions where plastic deformations were triggered. The numerical results obtained were close to field observations. They enabled the identification of the advantages and limitations of the two approaches based on the MEF. Finally, the results also allowed to identify the main parameters that influence the development of the damage zones and the different deformation mechanisms that occur along the damage zone.
|
3 |
[en] FAULT MESHING GENERATION IN SEISMIC DATA BY COMPETITIVE LEARNING / [pt] GERAÇÃO DE MALHAS DE FALHAS EM DADOS SÍSMICOS POR APRENDIZADO COMPETITIVOMARCOS DE CARVALHO MACHADO 10 July 2008 (has links)
[pt] O mapeamento manual de falhas em dados sísmicos
tridimensionais é uma tarefa que consome muito tempo do
intérprete. Uma grande quantidade de atributos sísmicos tem
sido proposta para realçar medidas de descontinuidades
associadas com as falhas. Entretanto, as falhas vistas
através desses atributos aparecem mais como tendências do
que como superfícies contínuas bem definidas, o que torna
difícil a automatização da construção de modelos de
falhas. Esta tese explora técnicas de Aprendizado
Competitivo aplicadas aos problemas de extração e
visualização de falhas em dados sísmicos. A estratégia
proposta parte de um atributo de falha previamente calculado
e consiste de três etapas. Na primeira, os dados
tridimensionais uniformemente amostrados do atributo de
falha são convertidos em um grafo com uso do algoritmo de
aprendizado competitivo Growing Neural Gas. Na segunda
etapa, o grafo sofre um processo de segmentação de forma a
extrair um conjunto de subgrafos, cada um compatível com uma
superfície de falha. Na terceira etapa, é utilizado o
algoritmo Malhas Neurais Abertas para construir uma malha
triangular para cada uma das superfícies identificadas.
Malhas Neurais Abertas é um algoritmo de Aprendizado
Competitivo que é proposto nesta tese, o qual constrói uma
malha a partir de uma função de probabilidades com topologia
de uma superfície aberta sem buracos. Exemplos com dados
bidimensionais e tridimensionais, sintéticos e
reais, são apresentados. Outra aplicação de Aprendizado
Competitivo introduzida nesta tese é a geração de malhas
geológicas, isto é, malhas que podem ser utilizadas na
simulação do comportamento de fluidos em subsuperfície. / [en] Manual fault mapping from 3D seismic data is a
time-consuming task. A plethora of seismic attributes has
been proposed to enhance the discontinuity measures
associated with faults. However, faults viewed through these
attributes appear more like trends than well-defined,
continuous surfaces, posing obstacles to the automation of
the fault modeling process. This thesis explores the use of
Competitive Learning techniques in fault extraction and
visualization. The proposed strategy starts with a
pre-computed fault attribute and consists of three
steps. In the first, the uniformly sampled 3D fault
attribute data are converted into a graph using Growing
Neural Gas, a Competitive Learning algorithm. In the
second step, the graph is submitted to a segmentation
process in order to extract a set of subgraphs, each one
compatible with a fault surface. In the third step, the
Open Neural Meshes algorithm is used to build a triangulated
mesh for each previously identified surface. Open Neural
Meshes is a Competitive Learning algorithm proposed in this
thesis, which builds a mesh from a probability function
with no-hole open surface topology. Examples with 2D and 3D,
synthetic and real data are presented. Another Competitive
Learning application introduced in this thesis is the
generation of geologic meshes. These meshes can be used to
simulate fluid flows in subsurface reservoirs.
|
Page generated in 0.0467 seconds