• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 328
  • 181
  • 42
  • 30
  • 12
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • Tagged with
  • 735
  • 171
  • 169
  • 160
  • 145
  • 112
  • 95
  • 80
  • 56
  • 56
  • 54
  • 53
  • 49
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Glutathione metabolism in the rat under varied nutritional conditions

Hum, Susan January 1991 (has links)
We developed a methodology to measure plasma hepatic glutathione (GSH) turnover and we tested it in rats treated with an inhibitor of GSH synthesis. Our goal was to determine whether protein intakes above NRC recommendations maximize hepatic GSH stores and turnover in vivo. We also wished to learn if plasma GSH, cysteine, or methionine concentrations or plasma GSH turnover could be used as noninvasive predictors of liver GSH status. Rats were fed purified diets containing 0, 5, 10, 20 or 40% casein for one week. The 0 and 5% casein diets were considered inadequate in protein, 10% marginal, 20% adequate and 40% excessive. Liver GSH content (mmol/liver) of rats fed 0 and 5% casein diets was 12.29 $ pm$ 1.11 and 16.43 $ pm$ 0.95, respectively, and increased to 23.62 $ pm$ 1.82 in the 10% group. Liver GSH content did not differ between the 20 and 40% groups. As dietary casein increased from 0-20%, free plasma GSH and cysteine concentrations and plasma GSH turnover increased, but did not increase further with the 40% diet. A sigmoidal relationship between plasma GSH turnover and hepatic GSH content was demonstrated. The best predictor of liver GSH content was not free plasma GSH concentration nor plasma GSH turnover, but the free plasma cysteine concentration.
182

Schistosoma mansoni : role of antioxidant systems in protection of developmental stages against oxidative killing and the effects of oltipraz on glutathione S-transferase

Nare, Bakela January 1991 (has links)
This study shows that resistance to killing by reactive oxygen intermediates (ROI) increases during migration and development in Schistosoma mansoni. Resistance is associated with the protective role of antioxidants as shown by the increased levels of superoxide dismutase and of the glutathione system enzymes. Hydroperoxide-dependent glutathione peroxidase activity was not detectable in newly transformed schistosomula, however the activity was present in the liver stages. The antischistosomal drug oltipraz (OPZ) decreased in an irreversible manner the activity of S. mansoni glutathione S-transferase (GST), an important protective enzyme, both in vivo and in vitro. The inhibition of GST activity was not isoenzyme restricted and was non-competitive with respect to the two substrates essential for GST activity. On the other hand, OPZ treatment increased the levels of mouse (S. mansoni host) liver GST activity in an isoenzyme specific manner, with the $ mu$ class subunit induction accounting for most of the increase. However, mammalian GST activity was inhibited by OPZ in vitro. However, the inhibition of mammalian GST activity was reversible upon addition of dithiol reducing compounds. OPZ inhibited the binding of ($ sp{14}$C) N-ethylmaleimide (specifically alkylates SH groups), suggesting that OPZ interacts with SH-groups of GST to inhibit its enzymatic activity. Another SH-dependent enzyme, hexokinase, from yeast and S. mansoni was reversibly inhibited by OPZ. The oxy-analogue of OPZ, in which the thione sulphur is replaced with oxygen, did not inhibit the enzymatic activity of GST and hexokinase. Many of the biochemical effects of OPZ on S. mansoni and its mammalian hosts may be related to its ability to bind to SH groups and inactivation of the functions of many essential proteins.
183

Effects of pressurization on the digestibility and glutathione inducing property of whey protein isolates in rats and mice

Jing, Yan, 1975- January 2005 (has links)
Hydrostatic pressure has been demonstrated to induce major changes in secondary structure of whey proteins resulting in an increased digestibility in vitro, and possibly an improvement of the glutathione (GSH) inducing effect of whey proteins in vivo. Micro filtration and ion-exchange, two commonly used processing techniques in whey protein manufacture, generate whey proteins with different compositions. Two animal studies were designed to compare the digestibility and GSH inducing effects of whey protein isolates (WPIs) treated with three repeated pulse cycling of pressure (3-cycle) or single pulse of high pressure (1-cycle) and pressurized microfiltrated and ion-exchange WPIs. The results indicate that special hydrostatic pressure treatment on the proteins improves its growth stimulating effect, but does not enhance the GSH-inducing effect of WPI in the healthy growing rats. Difference among commercial whey protein products is also an important factor that affects the biological properties of the pressurized whey proteins. In conclusion, both proper pressure treatment and product composition should be considered in order to find the most bio-effective whey protein preparation.
184

Studies of transgenic tobacco plants containing Escherichia Coli glutathione reductase.

Dlamini, Zodwa Lawrentia. January 1996 (has links)
Glutathione reductase (GR) and superoxide dismutase (SOD) enzymes are thought to play an important role in the plant chloroplast antioxidant system. Tobacco plants transformed with E. coli glutathione reductase and superoxide dismutase genes were used to investigate the role of these gene products (enzymes) in the chloroplast antioxidant system. These plants were T1318 (transformants with increased levels of cytoplasmic glutathione reductase activity) and GOR1OT (transformants with increased levels of cytoplasmic' glutathione reductase activity and chloroplastic superoxide dismutase). In addition, 10~M methyl violegen (paraquat), was used to perturb the system experimentally under high light, low light and in darkness. During these experiments GRA (glutathione reductase activity) was assayed and the results expressed as mg-1protein, mg-1 chlorophyll and g-1 tissue, using different types of transgenic plants. T131 B-cytosolic GOR transformants had a higher GRA under high light intensity. Under low light intensity T131B had a small increase in GRA compared to controls (T131 Bs in 1mM CaS04). Also leaf discs in the dark showed similar GRA as did controls. The three treatments had no effect on the GRA of untransformed plants. GOR1OT (cytoplamic GOR and chloroplastic SOD transformants) had a slight increase in GRA under high light intensity and in darkness. At low light intensity GOR10T showed similar results to controls. The results indicate the overall absolute increase in GRA in transgenic plants after methyl violegen treatment. The higher activity than that of nontransgenic controls indicate that bacterial GRA must have also increased following exposure to methyl violegen. / Thesis (M.Sc.)-University of Natal, 1996.
185

INTERACTIONS BETWEEN SELENIUM AND POLYCHLORINATED BIPHENYLS (PCBs)

Stemm, Divinia Nolasco 01 January 2005 (has links)
This study investigated the interaction between polychlorinated biphenyls (PCBs) and selenium to explain the mechanism involved that could affect selenium metabolism and its anti-cancer property. PCBs congeners and mixtures were previously found to reduce hepatic Se and Se-dependent glutathione peroxidase activity. I hypothesized that certain PCB congeners affect selenium metabolism in the rat liver resulting in diminished antioxidant capacity of selenoproteins, which could alter the ability of Se to protect against PCBs induced tumor promotion. In the first study, the influence of 3,3,4,4-tetrachlorobiphenyl (PCB 77) on hepatic Se and glutathione peroxidase (GPx1) activity as well as cytochrome P450 1A1 induction was examined by employing a time-course study, which showed that PCB 77 significantly reduced the hepatic selenium level and GPx1 activity and that this effect was influenced by gender. The next study explored how PCB 77 could deplete hepatic selenium by determining selenium concentrations in different tissues, feces and urine. This study demonstrated that PCB-77 decreased hepatic Se by increased excretion of Se in urine but not in feces. Unlike glutathione peroxidase, thioredoxin reductase activity was not affected by PCB 77. The third study investigated the effect of selenium supplementation on the tumor promoting activity of PCB 77 and 2,2,4,4,5,5-hexaclorobiphenyl (PCB 153) using a 2-stage carcinogenesis model. Se supplementation did not diminish the induction of altered hepatic foci by coplanar PCB 77 or ortho-substituted PCB 153. Instead of protection, the number of foci per cubic centimeter and per liver among the PCB-77 treated rats was increased as the selenium dietary level increased. PCB 153 did not show the same selenium dose-response effect; nevertheless, selenium supplementation did not confer protection against foci development. On the other hand, supranutritional selenium reduced the mean focal volume. Supranutritional selenium or PCBs did not affect cell proliferation or thioredoxin reductase activity. Lastly, the use of the Zeeman graphite furnace atomic absorption spectrometry (GFAAS) method and closed microwave digestion technique for selenium determination of biological samples was compared with the neutron activation analysis and fluorometry methods. I found that GFAAS was not as reliable as the other methods.
186

MULTIFUNCTIONAL POTENTIAL THERAPEUTICS TOWARDS OXIDATIVE STRESS MEDIATED NEURODEGENERATIVE DISORDERS AND MODELS THEREOF

Joshi, Gururaj 01 January 2006 (has links)
The studies described in this dissertation were performed with the goal of understandingthe function of antioxidant compounds delivered in vivo to rodents and the implication of theresults towards oxidative stress (OS)-related neurodegenerative disorders with particularemphasis on Alzheimer's disease (AD). OS has been implicated in AD and is characterized byextensive oxidative damage to protein, lipids and DNA. A major thrust of this dissertation workwas to gain insight into antioxidant properties of compounds used in the following studies andtheir efficacy as potential therapeutics for treatment of OS-related disorders.D609, a glutathione (GSH) mimetic is known to trap OH. Radicals, scavenge H2O2 andreduce the A?? (1-42)-induced OS and cytotoxicity in neurons. The present dissertation studyshowed in vivo protective effect of D609 in synaptosomes and mitochondria isolated fromgerbils against OS mediated by Fe2+/H2O2, AAPH, and A?? (1-42). Upon intraperitonial (i.p.)injection of gerbils, D609 showed protection of subsequently isolated brain moieties against OS.In vivo administration of D609 also modulates brain GSH levels and increases the activity of keyGSH-related enzymes, thereby likely provides a protection against OS.Adriamycin (ADR), a quinone-containing chemotherapeutic, is known to produce ROS inheart. Patients under treatment with ADR often show persistent changes in cognitive function(effect called as chemobrain by patients). Upon i.p. injection, ADR causes OS, increasesexpression of multidrug resistant protein-1 (MRP-1) in brain and alters GSH levels and itsrelated enzyme activities. ??-Glutamyl cysteinyl ethyl ester (GCEE) is known to increase GSHlevels in brain, in vivo. Research reported in this dissertation shows that in vivo GCEE reversesthe ADR-mediated OS in mice brain.N-acetylcysteine (NAC), a GSH precursor provides the limiting substrate cysteine inGSH synthesis. Previously, our laboratory showed increased GSH levels post i.p. injection ofNAC and reduces OS in synaptosomes treated with acrolein. The present study showed thatNAC given in drinking water to APP/PS-1 mice, a model of AD can significantly reduce OS.These results provide a potential therapeutic intervention by antioxidants that can modulateGSH in OS-mediated neurodegenerative disorders.
187

Intracellular levels of reduced and oxidized glutathione in the tissue zones of the rat kidney

DeWitt, Jason A. January 1999 (has links)
The purpose of this study was to determine the levels of whole tissue, cytosolic, and mitochondrial glutathione in the tissue zones of the rat kidney. Reduced (GSH) and oxidized glutathione (GSSG) were measured spectrophotometrically in tissue homogenates. Differential centrifugation was used to isolate the cytosolic and mitochondrial fractions. Cortical GSH and GSSG levels accounted for 51% and 60%, respectively, of the GSH and GSSG levels in the whole kidney. Cytosolic GSH levels were similar in the cortex and medulla but lower in the papilla. Cytosolic GSSG levels were highest in the cortex and lowest in the medulla. Mitochondrial GSH and GSSG levels did not follow a pattern similar to that of the cytosol or whole tissue. The mitochondrial redox ratio (GSH/GSH + GSSG X 100) was significantly higher in the cortex (ie., 67%) than the medulla (ie., 39%). The cytosolic redox ratio showed an opposite relationship with the cortex (ie., 57%) being lower than the medulla (ie., 78%). This study demonstrates that there are differences in GSH levels, GSSG levels, and the redox ratio in the tissue zones of the rat kidney. / Department of Physiology and Health Science
188

Influence of acute and chronic glutathione manipulations on coronary vascular resistance and endothelium dependent dilation in isolated perfused rat hearts

Levy, Andrew Shawn January 1900 (has links)
Glutathione (GSH), a 3-amino acid compound is ubiquitously expressed in eukaryotic cells and is the most abundant low molecular weight thiol. The importance of GSH is highlighted by its multitude of effects. Within the vascular wall GSH plays a crucial role as an intracellular antioxidant and it possess the ability to act as a signalling intermediate and store for nitric oxide (NO). The importance of NO and its role in vascular wall homeostasis is well recognized. Within the coronary circulation, NO is the primary dilator of many of the large arteries and the smaller arterioles. In addition to controlling coronary vascular tone, the importance of NO is highlighted by its antithrombotic, antihypertrophic, and antriproliferative effects. During instances of cardiovascular disease and normal aging, increases in the production of reactive oxygen species occur. A portion of the deleterious vascular effects of reactive oxygen species are believed to be due to reduction in NO bioavailability as a result of increased ROS-mediated destruction of NO. Altered GSH production in humans has been demonstrated to reduce endothelial function. Conversely, supplementation with GSH augments endothelium-dependent dilation. The mechanisms by which these alterations in GSH influence vasomotor function have not been resolved. The purpose of the studies within this thesis was to examine the impact of chronic and acute GSH modulations on coronary vascular resistance (CVR) and endothelium dependent dilation. In all experiments vascular reactivity was assessed in the isolated perfused rat heart. The advantage of this technique is that it allows the global coronary vasomotor functioning to be examined. Hearts were allowed to stabilize for 30 minutes to allow for the development of spontaneous coronary vascular resistance, followed by a bradykinin (BK) dose-response curve to assess endothelium-dependent dilation. The coronary circulation was then maximally dilated using an endothelium-independent agonist. In all cases BK-mediated dilation is expressed as a percentage of the endothelium-independent dilation. Chapter 2 of this document examines the chronic nature of GSH depletion and examines whether GSH depletion augments the influence of natural aging. Animals (mean age 33 and 65 weeks) were randomized to receive L-Buthionine-(S,R)-sulphoximine (BSO) in the tap water in order to inhibit GSH synthesis, or regular tap water (normal controls). Following 10 days of BSO treatment, ventricular GSH content was reduced in the BSO group compared to the control (0.182±0.021 vs 2.022±0.084 nmol/mg wet weight, p<0.05) and there was increased ventricular H2O2 content (1.345±0.176 vs 0.877±0.123 pmol/µg PRO, p<0.05). Baseline CVR was significantly reduced in the older animals compared to the adult animals (3.92±0.34 vs 4.76±0.20 and 3.67±0.24 vs 5.12±0.37 mmHg/ml×min-1 in the control and BSO treated groups, p<0.05). Conversely, in the presence of LNAME there was a significant increase in CVR in the adult BSO group (14.15±0.99, p<0.05) compared to all other groups. In the absence of LNAME, maximal dilation (percent endothelium-independent response) was reduced in the older animals compared to the adult animals (77±10.3% vs 95.0±1.0% for older and adult control and 92.7±4.5% vs 98.6±0.6% for the older and adult BSO, main effect of age). In the presence of LNAME the adult BSO group had a significantly reduced sensitivity (EC50) compared to all other groups (-7.39±0.09 Log M, p<0.05). Additionally, adult BSO treated animals had an increase in eNOS protein content. These results demonstrate that chronic thiol depletion resulted in an increased reliance on NO in the adult BSO group only. In chapter 3 the beneficial effects of GSH supplementation on BK mediated dilation were examined. Acute GSH was administered in the perfusate at either 0 (control) or with 10 µM for 2 reasons, 1) this concentration does not reduce basal coronary vascular resistance, allowing for a similar baseline CVR across conditions and 2) the 10 µM concentration is a physiologically relevant concentration of plasma/extracellular fluid GSH. The sensitivity to the endothelial agonist bradykinin was enhanced in the presence of GSH (-8.70±0.16 vs -7.94±0.06 LogM, p<0.01). The GSH effect was not dependent on NO production or utilization by soluble guanylate cyclase (sGC) as the enhanced dilation in the GSH group was maintained despite NOS (LNAME) and/or sGC inhibition. When the hearts were supplemented with a ROS scavenger TEMPOL, enhanced dilation was seen in the control group, but was not further enhanced in the GSH group. The requirement for ROS was best demonstrated when both the CON and GSH groups were supplemented with both TEMPOL and LNAME. This condition resulted in similar sensitivity (-7.76±0.19 vs -7.75±0.17 LogM, p>0.05) and area under the curve (182.33±12.70 vs 170±13.86, p>0.05) between GSH and CON. Thus, it was concluded that the effects of GSH administration requires the presence of ROS and exerts its effect in the microvasculature. The study presented in chapter 4 examined the effects of acute thiol modulation (depletion) on CVR and endothelium-dependent dilation. Previous reports have suggested that a reduction in intracellular GSH causes impaired NO production, and functional data support this contention. However, a majority of the data regarding the effects of thiol manipulation are from endothelial-removed vessels. The following agents were used to reduce GSH: the glutathione reductase inhibitor, BCNU; the thiol oxidizing agent, diamide; the thiol conjugating agent, ethacrynic acid (EA); and a thioredoxin inhibitor (CDNB). Preliminary data revealed that only CDNB (11.46±0.71 mmHg/ml×min-1) and EA (8.61±0.36 mmHg/ml×min-1) caused an elevation in CVR compared to the control (6.73±0.24 mmHg/ml×min-1). Conversely, Diamide and BCNU did not significantly affect baseline CVR, or the BK mediated responses. In the presence of EA, there was an overall blunting of the BK-response curve as observed by reduced EC50 (-7.85±0.07 Log M) and maximal dilation (90.8±1.8 %, percent endothelium-independent dilation) compared to the control group (-8.42±0.08 Log M and 97.7±1.6%). In the presence of CDNB the maximal dilation was 74.4±1.9% and the EC50 was -8.83±0.28 Log M. In addition to altering BK mediated responses, acute thiol depletion with all agents resulted in an increased minimal CVR with significant increases observed in the presence of CDNB and EA. There was a significant correlation with GSH:GSSG ratio and baseline (-0.547, p<0.05) and minimal CVR (r=-0.581, p<0.05). This study demonstrates that modulation of the GSH:GSSG ratio using a variety of agents with diverse mechanisms elicits differential responses within the vasculature. Specifically conjugation of GSH and inhibition of thioredoxin significantly alters BK mediated response, where as BCNU and dimaide did not. These results suggest that a modulation in the GSH:GSSG ratio impairs endothelium-dependent dilation and alters total dilatory capacity (baseline-minimal CVR) and thus may have implications for adequate tissue perfusion. Across all studies there was significant correlation between GSH and GSSG with both baseline and minimal CVR. Therefore it is likely that changes in overall glutathione content plays a role in determining baseline and minimal coronary vascular resistance. These results demonstrate the complexity that manipulations of GSH have on both CVR and endothelium-dependent dilation, and provide mechanistic insight into how changes in GSH alter coronary vascular resistance and endothelium-dependent dilation.
189

Isolation And Immunologic Characterization Of Theta Class Glutathione S-transferase Gstt2-2 From Bovine Liver

Isgor, Sultan Belgin 01 March 2002 (has links) (PDF)
The glutathione-S-transferases (GSTs) (EC.2.5.1.18) are enzymes that participate in cellular detoxification of endogenous as well as foreign electrophilic compounds, function in the cellular detoxification systems and are evolved to protect cells against reactive oxygen metabolites by conjugating the reactive molecules to the nucleophile scavenging tripeptide glutathione (GSH, &amp / #61543 / -glu-cys-gly). The GSTs are found in all eukaryotes and prokaryotic systems, in the cytoplasm, on the microsomes, and in the mitochondria. Cytosolic GSTs have been grouped into seven distinct classes as: alpha (&amp / #61537 / ), mu (&amp / #61549 / ), pi (&amp / #61552 / ), sigma (&amp / #61555 / ), omega, theta (&amp / #61553 / ) and zeta (&amp / #61540 / ). In comparison with other GSTs, class theta enzymes have proven difficult to isolate and characterize. Two distinct theta GSTs have been identified in man, GSTT1-1 and GSTT2-2 three in the rat rGST1-1, rGSTT2-2 and 13-13 and one in the mouse. this study, a class theta GST (GSTT2-2), with high activity towards 1-MS was isolated and purified from bovine liver in 3% yield with a purification factor of 3-fold. The purification protocol included a sequential DEAE cellulose anion exchanger liquid chromatography column, S-hexylglutathione agarose affinity column, dye binding orange A and chromatofocusing columns. The enzyme activity and protein content decreased rapidly after the last step of purification. The purified GSTT2-2 showed significant activity only towards 1-MS as 77 nmole/min/mg. The GSTT2-2 purified from bovine liver had a molecular weigth (Mr) value of about 28,200 which was also confirmed by Western Blott Analysis. The purified farctions of GSTT2-2 with other kolon farctions were tested with anti GSTT2-2, antiGST alfa, antiGST mu and antiGST pi antibodies. The enzyme activities towards CDNB, 4-nitrobenzylchloride (NBC) and 1-menapthyl sulfate were measured as described by Habig and Jacoby.
190

The Quest for Functional Quasi-Species in Glutathione Transferase Libraries

Rúnarsdóttir, Arna January 2010 (has links)
Glutathione transferases (GSTs) are good candidates for investigations of enzyme evolution, due to their broad substrate specificities and structural homology. The primary role of GSTs is to act as phase II detoxifying enzymes protecting the cell from toxic compounds of both endo- and exogenous origins. The detoxification is conducted via conjugation with glutathione (GSH), which facilitates their removal from the body. The work presented in this thesis has supported a theory for enzyme evolution when the multiple pathway to novel functions can been seen to involve a “generalist” state from which “specialist” states with a new activities can evolve. The generalist has broader specificity and lower activity than the specialist. The term quasi-species is used for a group or cluster of enzyme variants with similar functional properties, and this entity has been suggested as the fittest group for further evolution. This is based on studies of the evolution of new GST variants in two generation. Three diverging clusters or quasi-species, with diverging substrate selectivity, were identified from a GST M1/M2 library, by using directed evolution (family DNA shuffling), multiple substrate screening and multivariate statistics as tools. One of the clusters was M1-like and the other was M2-like, both functionally and structurally. The third quasi-species diverged orthogonally from the parent-like distributions. Its functional character can be referred to as a “generalist” as it had lower activities with most of the substrates assayed except for epoxy-3-(4-nitrophenoxy)-propane (EPNP) and p-nitrophenyl acetate (pNPA). Another round of family DNA shuffling was made with selected variants from the “generalist” quasi-species. From the second generation three quasi-species emerged with diverging functions and sequences. The major cluster contained enzyme variants that represented a direct propagation of the generalists. Diverging from the generalists was a cluster with high specificity with isothiocyanates (ITCs). Increased ITC specificity and decreased epoxide specificity was observed among the novel variants (specialists). The change in functional properties was attributed to a Tyr116His substitution in the active site. These results demonstrate the usefulness of multivariate analysis in the quest for novel enzyme quasi-species in a multi-substrate space, and how minimal changes in the active site can generate distinctive functional properties. An application of our method could be identification of enzyme quasi-species that have lost their sensitivity with alternative inhibitors.

Page generated in 0.0325 seconds