• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 3
  • 1
  • Tagged with
  • 48
  • 48
  • 48
  • 35
  • 18
  • 16
  • 16
  • 13
  • 12
  • 12
  • 12
  • 10
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk Initialization

Salamat, Amirreza 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Research on social networks and understanding the interactions of the users can be modeled as a task of graph mining, such as predicting nodes and edges in networks. Dealing with such unstructured data in large social networks has been a challenge for researchers in several years. Neural Networks have recently proven very successful in performing predictions on number of speech, image, and text data and have become the de facto method when dealing with such data in a large volume. Graph NeuralNetworks, however, have only recently become mature enough to be used in real large-scale graph prediction tasks, and require proper structure and data modeling to be viable and successful. In this research, we provide a new modeling of the social network which captures the attributes of the nodes from various dimensions. We also introduce the Neural Network architecture that is required for optimally utilizing the new data structure. Finally, in order to provide a hot-start for our model, we initialize the weights of the neural network using a pre-trained graph embedding method. We have also developed a new graph embedding algorithm. We will first explain how previous graph embedding methods are not optimal for all types of graphs, and then provide a solution on how to combat those limitations and come up with a new graph embedding method.
2

Robustness of Neural Networks for Discrete Input: An Adversarial Perspective

Ebrahimi, Javid 30 April 2019 (has links)
In the past few years, evaluating on adversarial examples has become a standard procedure to measure robustness of deep learning models. Literature on adversarial examples for neural nets has largely focused on image data, which are represented as points in continuous space. However, a vast proportion of machine learning models operate on discrete input, and thus demand a similar rigor in understanding their vulnerabilities and robustness. We study robustness of neural network architectures for textual and graph inputs, through the lens of adversarial input perturbations. We will cover methods for both attacks and defense; we will focus on 1) addressing challenges in optimization for creating adversarial perturbations for discrete data; 2) evaluating and contrasting white-box and black-box adversarial examples; and 3) proposing efficient methods to make the models robust against adversarial attacks.
3

Learning 3D structures for protein function prediction

Muttakin, Md Nurul 05 1900 (has links)
Machine learning models such as AlphaFold can generate protein 3D conformation from primary sequence up to experimental accuracy, which gives rise to a bunch of research works to predict protein functions from 3D structures. Almost all of these works attempted to use graph neural networks (GNN) to learn 3D structures of proteins from 2D contact maps/graphs. Most of these works use rich 1D features such as ESM and LSTM embedding in addition to the contact graph. These rich 1D features essentially obfuscate the learning capability of GNNs. In this thesis, we evaluate the learning capabilities of GCNs from contact map graphs in the existing framework, where we attempt to incorporate distance information for better predictive performance. We found that GCNs fall far short with 1D-CNN without language models, even with distance information. Consequently, we further investigate the capabilities of GCNs to distinguish subgraph patterns corresponding to the InterPro domains. We found that GCNs perform better than highly rich sequence embedding with MLP in recognizing the structural patterns. Finally, we investigate the capability of GCNs to predict GO-terms (functions) individually. We found that GCNs perform almost on par in identifying GO-terms in the presence of only hard positive and hard negative examples. We also identified some GO-terms indistinguishable by GCNs and ESM2-based MLP models. This gives rise to new research questions to be investigated by future works.
4

Predicting Protein Functions From Interactions Using Neural Networks and Ontologies

Qathan, Shahad 22 November 2022 (has links)
To understand the process of life, it is crucial for us to study proteins and their functions. Proteins execute (almost) all cellular activities, and their functions are standardized by Gene Ontology (GO). The amount of discovered protein sequences grows rapidly as a consequence of the fast rate of development of technologies in gene sequencing. In UniProtKB, there are more than 200 million proteins. Still, less than 1% of the proteins in the UniProtKB database are experimentally GO-annotated, which is the result of the exorbitant cost of biological experiments. To minimize the large gap, developing an efficient and effective method for automatic protein function prediction (AFP) is essential. Many approaches have been proposed to solve the AFP problem. Still, these methods suffer from limitations in the way the knowledge of the domain is presented and what type of knowledge is included. In this work, we formulate the task of AFP as an entailment problem and exploit the structure of the related knowledge in a set and reusable framework. To achieve this goal, we construct a knowledge base of formal GO axioms and protein-protein interactions to use as background knowledge for AFP. Our experiments show that the approach proposed here, which allows for ontology awareness, improves results for AFP of proteins; they also show the importance of including protein-protein interactions for predicting the functions of proteins.
5

A Graph Convolutional Neural Network Based Approach for Object Tracking Using Augmented Detections With Optical Flow

Papakis, Ioannis 18 May 2021 (has links)
This thesis presents a novel method for online Multi-Object Tracking (MOT) using Graph Convolutional Neural Network (GCNN) based feature extraction and end-to-end feature matching for object association. The Graph based approach incorporates both appearance and geometry of objects at past frames as well as the current frame into the task of feature learning. This new paradigm enables the network to leverage the "contextual" information of the geometry of objects and allows us to model the interactions among the features of multiple objects. Another central innovation of the proposed framework is the use of the Sinkhorn algorithm for end-to-end learning of the associations among objects during model training. The network is trained to predict object associations by taking into account constraints specific to the MOT task. Additionally, in order to increase the sensitivity of the object detector, a new approach is presented that propagates previous frame detections into each new frame using optical flow. These are treated as added object proposals which are then classified as objects. A new traffic monitoring dataset is also provided, which includes naturalistic video footage from current infrastructure cameras in Virginia Beach City with a variety of vehicle density and environment conditions. Experimental evaluation demonstrates the efficacy of the proposed approaches on the provided dataset and the popular MOT Challenge Benchmark. / Master of Science / This thesis presents a novel method for Multi-Object Tracking (MOT) in videos, with the main goal of associating objects between frames. The proposed method is based on a Deep Neural Network Architecture operating on a Graph Structure. The Graph based approach makes it possible to use both appearance and geometry of detected objects to retrieve high level information about their characteristics and interaction. The framework includes the Sinkhorn algorithm, which can be embedded in the training phase to satisfy MOT constraints, such as the 1 to 1 matching between previous and new objects. Another approach is also proposed to improve the sensitivity of the object detector by using previous frame detections as a guide to detect objects in each new frame, resulting in less missed objects. Alongside the new methods, a new dataset is also provided which includes naturalistic video footage from current infrastructure cameras in Virginia Beach City with a variety of vehicle density and environment conditions. Experimental evaluation demonstrates the efficacy of the proposed approaches on the provided dataset and the popular MOT Challenge Benchmark.
6

Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk Initialization

Amirreza Salamat (9740444) 07 January 2021 (has links)
Research on social networks and understanding the interactions of the users can be modeled as a task of graph mining, such as predicting nodes and edges in networks.Dealing with such unstructured data in large social networks has been a challenge for researchers in several years. Neural Networks have recently proven very successful in performing predictions on number of speech, image, and text data and have become the de facto method when dealing with such data in a large volume. Graph NeuralNetworks, however, have only recently become mature enough to be used in real large-scale graph prediction tasks, and require proper structure and data modeling to be viable and successful. In this research, we provide a new modeling of the social network which captures the attributes of the nodes from various dimensions. We also introduce the Neural Network architecture that is required for optimally utilizing the new data structure. Finally, in order to provide a hot-start for our model, we initialize the weights of the neural network using a pre-trained graph embedding method. We have also developed a new graph embedding algorithm. We will first explain how previous graph embedding methods are not optimal for all types of graphs, and then provide a solution on how to combat those limitations and come up with a new graph embedding method.
7

Predicting safe drug combinations with Graph Neural Networks (GNN)

Amanzadi, Amirhossein January 2021 (has links)
Many people - especially during their elderly - consume multiple drugs for the treatment of complex or co-existing diseases. Identifying side effects caused by polypharmacy is crucial for reducing mortality and morbidity of the patients which will lead to improvement in their quality of life. Since there is immense space for possible drug combinations, it is infeasible to examine them entirely in the lab. In silico models can offer a convenient solution, however, due to the lack of a sufficient amount of homogenous data it is difficult to develop both reliable and scalable models in its ability to accurately predict Polypharmacy Side Effect. Recent advancement in the field of representational learning has utilized the power of graph networks to harmonize information from the heterogeneous biological databases and interactomes. This thesis takes advantage of those techniques and incorporates them with the state-of-the-art Graph Neural Network algorithms to implement a Deep learning pipeline capable of predicting the Adverse Drug Reaction of any given paired drug combinations.
8

Efficient image based localization using machine learning techniques

Elmougi, Ahmed 23 April 2021 (has links)
Localization is critical for self-awareness of any autonomous system and is an important part of the autonomous system stack which consists of many phases including sensing, perceiving, planning and control. In the sensing phase, data from on board sensors are collected, preprocessed and passed to the next phase. The perceiving phase is responsible for self awareness or localization and situational awareness which includes multi-objects detection and scene understanding. After the autonomous system is aware of where it is and what is around it, it can use this knowledge to plan for the path it can take and send control commands to pursue this path. In this proposal, we focus on the localization part of the autonomous stack using camera images. We deal with the localization problem from different perspectives including single images and videos. Starting with the single image pose estimation, our approach is to propose systems that not only have good localization accuracy, but also have low space and time complexity. Firstly, we propose SurfCNN, a low cost indoor localization system that uses SURF descriptors instead of the original images to reduce the complexity of training convolutional neural networks (CNN) for indoor localization application. Given a single input image, the strongest SURF features descriptors are used as input to 5 convolutional layers to find its absolute position and orientation in arbitrary reference frame. The proposed system achieves comparable performance to the state of the art using only 300 features without the need for using the full image or complex neural networks architectures. Following, we propose SURF-LSTM, an extension to the idea of using SURF descriptors instead the original images. However, instead of CNN used in SurfCNN, we use long short term memory (LSTM) network which is one type of recurrent neural networks (RNN) to extract the sequential relation between SURF descriptors. Using SURF-LSTM, We only need 50 features to reach comparable or better results compared with SurfCNN that needs 300 features and other works that use full images with large neural networks. In the following research phase, instead of using SURF descriptors as image features to reduce the training complexity, we study the effect of using features extracted from other CNN models that were pretrained on other image tasks like image classification without further training and fine tuning. To learn the pose from pretrained features, graph neural networks (GNN) are adopted to solve the single image localization problem (Pose-GNN) by using these features representations either as features of nodes in a graph (image as a node) or converted into a graph (image as a graph). The proposed models outperform the state of the art methods on indoor localization dataset and have comparable performance for outdoor scenes. In the final stage of single image pose estimation research, we study if we can achieve good localization results without the need for training complex neural network. We propose (Linear-PoseNet) by which we can achieve similar results to the other methods based on neural networks with training a single linear regression layer on image features from pretrained ResNet50 in less than one second on CPU. Moreover, for outdoor scenes, we propose (Dense-PoseNet) that have only 3 fully connected layers trained on few minutes that reach comparable performance to other complex methods. The second localization perspective is to find the relative poses between images in a video instead of absolute poses. We extend the idea used in SurfCNN and SURF-LSTM systems and use SURF descriptors as feature representation of the images in the video. Two systems are proposed to find the relative poses between images in the video using 3D-CNN and 2DCNN-RNN. We show that using 3D-CNN is better than using the combination of CNN-RNN for relative pose estimation. / Graduate
9

Applying Deep Learning Techniques to Assist Bioinformatics Researchers in Analysis Pipeline Composition

Green, Ryan 02 June 2023 (has links)
No description available.
10

COMBINING CONVOLUTIONAL NEURAL NETWORKS AND GRAPH NEURAL NETWORKS FOR IMAGE CLASSIFICATION

Trivedy, Vivek January 2021 (has links)
Convolutional Neural Networks (CNNs) have dominated the task of imageclassification since 2012. Some key components of their success are that the underlying architecture integrates a set inductive biases such as translational invariance and the training computation can be significantly reduced by employing weight sharing. CNNs are powerful tools for generating new representations of images tailored to a particular task such as classification. However, because each image is passed through the network independent of other images, CNNs are not able to effectively aggregate information between examples. In this thesis, we explore the idea of using Graph Neural Networks (GNNs) in conjunction with CNNs to produce an architecture that has both the representational capacity of a CNN and the ability to aggregate information between examples. Graph Neural Networks apply the concept of convolutions directly on graphs. A result of this is that GNNs are able to learn from the connections between nodes. However, when working with image datasets, there is no obvious choice on how to construct a graph. There are certain heuristics such as ensuring homophily that have empirically been shown to increase the performance of GNNs. In this thesis, we apply different schemes of constructing a graph from image data for the downstream task of image classification and experiment with settings such as using multiple feature spaces and enforcing a bipartite graph structure. We also propose a model that allows for end to end training using CNNs and GNNs with proxies and attention that improves classification accuracy in comparison to a regular CNN. / Computer and Information Science

Page generated in 0.0378 seconds