• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 13
  • 10
  • 10
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk Initialization

Salamat, Amirreza 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Research on social networks and understanding the interactions of the users can be modeled as a task of graph mining, such as predicting nodes and edges in networks. Dealing with such unstructured data in large social networks has been a challenge for researchers in several years. Neural Networks have recently proven very successful in performing predictions on number of speech, image, and text data and have become the de facto method when dealing with such data in a large volume. Graph NeuralNetworks, however, have only recently become mature enough to be used in real large-scale graph prediction tasks, and require proper structure and data modeling to be viable and successful. In this research, we provide a new modeling of the social network which captures the attributes of the nodes from various dimensions. We also introduce the Neural Network architecture that is required for optimally utilizing the new data structure. Finally, in order to provide a hot-start for our model, we initialize the weights of the neural network using a pre-trained graph embedding method. We have also developed a new graph embedding algorithm. We will first explain how previous graph embedding methods are not optimal for all types of graphs, and then provide a solution on how to combat those limitations and come up with a new graph embedding method.
2

Plane Permutations and their Applications to Graph Embeddings and Genome Rearrangements

Chen, Xiaofeng 27 April 2017 (has links)
Maps have been extensively studied and are important in many research fields. A map is a 2-cell embedding of a graph on an orientable surface. Motivated by a new way to read the information provided by the skeleton of a map, we introduce new objects called plane permutations. Plane permutations not only provide new insight into enumeration of maps and related graph embedding problems, but they also provide a powerful framework to study less related genome rearrangement problems. As results, we refine and extend several existing results on enumeration of maps by counting plane permutations filtered by different criteria. In the spirit of the topological, graph theoretical study of graph embeddings, we study the behavior of graph embeddings under local changes. We obtain a local version of the interpolation theorem, local genus distribution as well as an easy-to-check necessary condition for a given embedding to be of minimum genus. Applying the plane permutation paradigm to genome rearrangement problems, we present a unified simple framework to study transposition distances and block-interchange distances of permutations as well as reversal distances of signed permutations. The essential idea is associating a plane permutation to a given permutation or signed permutation to sort, and then applying the developed plane permutation theory. / Ph. D. / This work is mainly concerned with studying two problems. The first problem starts with a graph <i>G</i> consisting of vertices and lines (called edges) linking some pairs of vertices. Intuitively, if the graph <i>G</i> can not be drawn on the sphere without crossing edges, it may be possibly drawn on a torus (i.e., the surface of a doughnut) without crossing edges; if it is still impossible, it may be possible to draw the graph <i>G</i> on the surface obtained by “gluing” several tori together. Once a graph <i>G</i> is drawn on a surface without crossing edges, there is a cyclic order of those edges incident to each vertex of the graph. Suppose you are not satisfied with how the edges around a vertex are cyclically arranged, and you want to arrange them differently. A question that arises naturally would be: is the adjusted drawing still cross-free on the original surface, or do we need to glue more (or fewer) tori in order for it to be crossfree? The second problem stems from genome rearrangements. In bioinformatics, people try to understand evolution (of species) by comparing the genome sequences (e.g., DNA sequences) of different species. Certain operations on genome sequences are believed to be potential ways of how species evolve. The operations studied in this work are transpositions, block-interchanges and reversals. For example, a transposition is such an operation that swaps two consecutive segments on the given genome sequence. As a candidate indicator of how far away one species is from another from an evolutionary perspective, we can compute how many transpositions are required to transform the genome sequence of one species to that of the other. In this work, we propose a plane permutation framework, which works effectively on solving the above mentioned two problems. In addition, plane permutations themselves are interesting objects to study and are studied as well.
3

Vector Space Embedding of Graphs via Statistics of Labelling Information

Gibert Domingo, Jaume 14 September 2012 (has links)
El reconeixement de patrons és la tasca que pretén distingir objectes entre diferents classes. Quan aquesta tasca es vol solucionar de forma automàtica un pas crucial és el com representar formalment els patrons a l'ordinador. En funció d'aquests formalismes, podem distingir entre el reconeixement estadístic i l'estructural. El primer descriu objectes com un conjunt de mesures col·locats en forma del que s'anomena un vector de característiques. El segon assumeix que hi ha relacions entre parts dels objectes que han de quedar explícitament representades i per tant fa servir estructures relacionals com els grafs per codificar la seva informació inherent. Els espais vectorials són una estructura matemàtica molt flexible que ha permès definir diverses maneres eficients d'analitzar patrons sota la forma de vectors de característiques. De totes maneres, la representació vectorial no és capaç d'expressar explícitament relacions binàries entre parts dels objectes i està restrigida a mesurar sempre, independentment de la complexitat dels patrons, el mateix nombre de característiques per cadascun d'ells. Les representacions en forma de graf presenten la situació contrària. Poden adaptar-se fàcilment a la complexitat inherent dels patrons però introdueixen un problema d'alta complexitat computational, dificultant el disseny d'eines eficients per al procés i l'anàlisis de patrons. Resoldre aquesta paradoxa és el principal objectiu d'aquesta tesi. La situació ideal per resoldre problemes de reconeixement de patrons seria el representar-los fent servir estructures relacionals com els grafs, i a l'hora, poder fer ús del ric repositori d'eines pel processament de dades del reconeixement estadístic. Una solució elegant a aquest problema és la de transformar el domini dels grafs en el domini dels vectors, on podem aplicar qualsevol algorisme de processament de dades. En altres paraules, assignant a cada graf un punt en un espai vectorial, automàticament tenim accés al conjunt d'algorismes del món estadístic per aplicar-los al domini dels grafs. Aquesta metodologia s'anomena graph embedding. En aquesta tesi proposem de fer una associació de grafs a vectors de característiques de forma simple i eficient fixant l'atenció en la informació d'etiquetatge dels grafs. En particular, comptem les freqüències de les etiquetes dels nodes així com de les aretes entre etiquetes determinades. Tot i la seva localitat, aquestes característiques donen una representació prou robusta de les propietats globals dels grafs. Primer tractem el cas de grafs amb etiquetes discretes, on les característiques són sencilles de calcular. El cas continu és abordat com una generalització del cas discret, on enlloc de comptar freqüències d'etiquetes, ho fem de representants d'aquestes. Ens trobem que les representacions vectorials que proposem pateixen d'alta dimensionalitat i correlació entre components, i tractem aquests problems mitjançant algorismes de selecció de característiques. També estudiem com la diversitat de diferents representacions pot ser explotada per tal de millorar el rendiment de classificadors base en el marc d'un sistema de múltiples classificadors. Finalment, amb una extensa evaluació experimental mostrem com la metodologia proposada pot ser calculada de forma eficient i com aquesta pot competir amb altres metodologies per a la comparació de grafs. / Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyze patterns. Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding. In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.
4

Graph embedding with rich information through heterogeneous graph

Sun, Guolei 12 November 2017 (has links)
Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most existing algorithms for graph embedding only rely on the topology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this thesis, we proposed a novel and general framework for graph embedding with rich text information (GERI) through constructing a heterogeneous network, in which we integrate node and edge content information with graph topology. Specially, we designed a novel biased random walk to explore the constructed heterogeneous network with the notion of flexible neighborhood. Our sampling strategy can compromise between BFS and DFS local search on heterogeneous graph. To further improve our algorithm, we proposed semi-supervised GERI (SGERI), which learns graph embedding in an discriminative manner through heterogeneous network with label information. The efficacy of our method is demonstrated by extensive comparison experiments with 9 baselines over multi-label and multi-class classification on various datasets including Citeseer, Cora, DBLP and Wiki. It shows that GERI improves the Micro-F1 and Macro-F1 of node classification up to 10%, and SGERI improves GERI by 5% in Wiki.
5

Towards Machine Learning Enabled Automatic Design of IT-Network Architectures

Wåhlin, Lova January 2019 (has links)
There are many machine learning techniques that cannot be performed on graph-data. Techniques such as graph embedding, i.e mapping a graph to a vector, can open up a variety of machine learning solutions. This thesis addresses to what extent static graph embedding techniques can capture important characteristics of an IT-architecture graph, with the purpose of embedding the graphs in a common euclidean vector space that can serve as the state space in a reinforcement learning setup. The metric used for evaluating the performance of the embedding is the security of the graph, i.e the time it would take for an unauthorized attacker to penetrate the IT-architecture graph. The algorithms evaluated in this work are the node embedding methods node2vec and gat2vec and the graph embedding method graph2vec. The predictive results of the embeddings are compared with two baseline methods. The results of each of the algorithms mostly display a significant predictive performance improvement compared to the baseline, where the F1 score in some cases is doubled. Indeed, the results indicate that static graph embedding methods can in fact capture some information about the security of an IT-architecture. However, no conclusion can be made whether a static graph embedding is actually the best contender for posing as the state space in a reinforcement learning framework. To make a certain conclusion other options has to be researched, such as dynamic graph embedding methods. / Det är många maskininlärningstekniker som inte kan appliceras på data i form av en graf. Tekniker som graph embedding, med andra ord att mappa en graf till ett vektorrum, can öppna upp för en större variation av maskininlärningslösningar. Det här examensarbetet evaluerar hur väl statiska graph embeddings kan fånga viktiga säkerhetsegenskaper hos en IT-arkitektur som är modellerad som en graf, med syftet att användas i en reinforcement learning algoritm. Dom egenskaper i grafen som används för att validera embedding metoderna är hur lång tid det skulle ta för en obehörig attackerare att penetrera IT-arkitekturen. Algorithmerna som implementeras är node embedding metoderna node2vec och gat2vec, samt graph embedding metoden graph2vec. Dom prediktiva resultaten är jämförda med två basmetoder. Resultaten av alla tre metoderna visar tydliga förbättringar relativt basmetoderna, där F1 värden i några fall uppvisar en fördubbling. Det går alltså att dra slutsatsen att att alla tre metoder kan fånga upp säkerhetsegenskaper i en IT-arkitektur. Dock går det inte att säga att statiska graph embeddings är den bästa lösningen till att representera en graf i en reinforcement learning algoritm, det finns andra komplikationer med statiska metoder, till exempel att embeddings från dessa metoder inte kan generaliseras till data som inte var använd till träning. För att kunna dra en absolut slutsats krävs mer undersökning, till exempel av dynamiska graph embedding metoder.
6

Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk Initialization

Amirreza Salamat (9740444) 07 January 2021 (has links)
Research on social networks and understanding the interactions of the users can be modeled as a task of graph mining, such as predicting nodes and edges in networks.Dealing with such unstructured data in large social networks has been a challenge for researchers in several years. Neural Networks have recently proven very successful in performing predictions on number of speech, image, and text data and have become the de facto method when dealing with such data in a large volume. Graph NeuralNetworks, however, have only recently become mature enough to be used in real large-scale graph prediction tasks, and require proper structure and data modeling to be viable and successful. In this research, we provide a new modeling of the social network which captures the attributes of the nodes from various dimensions. We also introduce the Neural Network architecture that is required for optimally utilizing the new data structure. Finally, in order to provide a hot-start for our model, we initialize the weights of the neural network using a pre-trained graph embedding method. We have also developed a new graph embedding algorithm. We will first explain how previous graph embedding methods are not optimal for all types of graphs, and then provide a solution on how to combat those limitations and come up with a new graph embedding method.
7

Studies on Neural Network-Based Graph Embedding and Its Extensions / ニューラルネットワークに基づくグラフ埋め込みとその拡張に関する研究

Okuno, Akifumi 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22807号 / 情博第737号 / 新制||情||126(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 下平 英寿, 教授 田中 利幸, 教授 鹿島 久嗣 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
8

Human-in-the-loop Machine Learning: Algorithms and Applications

Liang, Jiongqian 25 September 2018 (has links)
No description available.
9

Novel Frameworks for Mining Heterogeneous and Dynamic Networks

Fang, Chunsheng January 2011 (has links)
No description available.
10

Semi-Supervised Half-Quadratic Nonnegative Matrix Factorization for Face Recognition

Alghamdi, Masheal M. 05 1900 (has links)
Face recognition is a challenging problem in computer vision. Difficulties such as slight differences between similar faces of different people, changes in facial expressions, light and illumination condition, and pose variations add extra complications to the face recognition research. Many algorithms are devoted to solving the face recognition problem, among which the family of nonnegative matrix factorization (NMF) algorithms has been widely used as a compact data representation method. Different versions of NMF have been proposed. Wang et al. proposed the graph-based semi-supervised nonnegative learning (S2N2L) algorithm that uses labeled data in constructing intrinsic and penalty graph to enforce separability of labeled data, which leads to a greater discriminating power. Moreover the geometrical structure of labeled and unlabeled data is preserved through using the smoothness assumption by creating a similarity graph that conserves the neighboring information for all labeled and unlabeled data. However, S2N2L is sensitive to light changes, illumination, and partial occlusion. In this thesis, we propose a Semi-Supervised Half-Quadratic NMF (SSHQNMF) algorithm that combines the benefits of S2N2L and the robust NMF by the half- quadratic minimization (HQNMF) algorithm.Our algorithm improves upon the S2N2L algorithm by replacing the Frobenius norm with a robust M-Estimator loss function. A multiplicative update solution for our SSHQNMF algorithmis driven using the half- 4 quadratic (HQ) theory. Extensive experiments on ORL, Yale-A and a subset of the PIE data sets for nine M-estimator loss functions for both SSHQNMF and HQNMF algorithms are investigated, and compared with several state-of-the-art supervised and unsupervised algorithms, along with the original S2N2L algorithm in the context of classification, clustering, and robustness against partial occlusion. The proposed algorithm outperformed the other algorithms. Furthermore, SSHQNMF with Maximum Correntropy (MC) loss function obtained the best results for most test cases.

Page generated in 0.0674 seconds