• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 15
  • 15
  • 15
  • 11
  • 10
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Higher-order reasoning with graph data

Leonardo de Abreu Cotta (13170135) 29 July 2022 (has links)
<p>Graphs are the natural framework of many of today’s highest impact computing applications: from online social networking, to Web search, to product recommendations, to chemistry, to bioinformatics, to knowledge bases, to mobile ad-hoc networking. To develop successful applications in these domains, we often need representation learning methods ---models mapping nodes, edges, subgraphs or entire graphs to some meaningful vector space. Such models are studied in the machine learning subfield of graph representation learning (GRL). Previous GRL research has focused on learning node or entire graph representations through associational tasks. In this work I study higher-order (k>1-node) representations of graphs in the context of both associational and counterfactual tasks.<br> </p>
2

<b>MOUSE SOCIAL BEHAVIOR CLASSIFICATION USING SELF-SUPERVISED LEARNING TECHNIQUES</b>

Sruthi Sundharram (18437772) 27 April 2024 (has links)
<p dir="ltr">Traditional methods of behavior classification on videos of mice often rely on manually annotated datasets, which can be labor-intensive and resource-demanding to create. This research aims to address the challenges of behavior classification in mouse studies by leveraging an algorithmic framework employing self-supervised learning techniques capable of analyzing unlabeled datasets. This research seeks to develop a novel approach that eliminates the need for extensive manual annotation, making behavioral analysis more accessible and cost-effective for researchers, especially those in laboratories with limited access to annotated datasets.</p>
3

Kernel Estimation Approaches to Blind Deconvolution

Yash Sanghvi (18387693) 19 April 2024 (has links)
<p dir="ltr">The past two decades have seen photography shift from the hands of professionals to that of the average smartphone user. However, fitting a camera module in the palm of your hand has come with its own cost. The reduced sensor size, and hence the smaller pixels, has made the image inherently noisier due to fewer photons being captured. To compensate for fewer photons, we can increase the exposure of the camera but this may exaggerate the effect of hand shake, making the image blurrier. The presence of both noise and blur has made the post-processing algorithms necessary to produce a clean and sharp image. </p><p dir="ltr">In this thesis, we discuss various methods of deblurring images in the presence of noise. Specifically, we address the problem of photon-limited deconvolution, both with and without the underlying blur kernel being known i.e. non-blind and blind deconvolution respectively. For the problem of blind deconvolution, we discuss the flaws of the conventional approach of joint estimation of the image and blur kernel. This approach, despite its drawbacks, has been the go-to method for solving blind deconvolution for decades. We then discuss the relatively unexplored kernel-first approach to solving the problem which is numerically stable than the alternating minimization counterpart. We show how to implement this framework using deep neural networks in practice for both photon-limited and noiseless deconvolution problems. </p>
4

Models and Representation Learning Mechanisms for Graph Data

Susheel Suresh (14228138) 15 December 2022 (has links)
<p>Graph representation learning (GRL) has been increasing used to model and understand data from a wide variety of complex systems spanning social, technological, bio-chemical and physical domains. GRL consists of two main components (1) a parametrized encoder that provides representations of graph data and (2) a learning process to train the encoder parameters. Designing flexible encoders that capture the underlying invariances and characteristics of graph data are crucial to the success of GRL. On the other hand, the learning process drives the quality of the encoder representations and developing principled learning mechanisms are vital for a number of growing applications in self-supervised, transfer and federated learning settings. To this end, we propose a suite of models and learning algorithms for GRL which form the two main thrusts of this dissertation.</p> <p><br></p> <p>In Thrust I, we propose two novel encoders which build upon on a widely popular GRL encoder class called graph neural networks (GNNs). First, we empirically study the prediction performance of current GNN based encoders when applied to graphs with heterogeneous node mixing patterns using our proposed notion of local assortativity. We find that GNN performance in node prediction tasks strongly correlates with our local assortativity metric---thereby introducing a limit. We propose to transform the input graph into a computation graph with proximity and structural information as distinct types of edges. We then propose a novel GNN based encoder that operates on this computation graph and adaptively chooses between structure and proximity information. Empirically, adopting our transformation and encoder framework leads to improved node classification performance compared to baselines in real-world graphs that exhibit diverse mixing.</p> <p>Secondly, we study the trade-off between expressivity and efficiency of GNNs when applied to temporal graphs for the task of link ranking. We develop an encoder that incorporates a labeling approach designed to allow for efficient inference over the candidate set jointly, while provably boosting expressivity. We also propose to optimize a list-wise loss for improved ranking. With extensive evaluation on real-world temporal graphs, we demonstrate its improved performance and efficiency compared to baselines.</p> <p><br></p> <p>In Thrust II, we propose two principled encoder learning mechanisms for challenging and realistic graph data settings. First, we consider a scenario where only limited or even no labelled data is available for GRL. Recent research has converged on graph contrastive learning (GCL), where GNNs are trained to maximize the correspondence between representations of the same graph in its different augmented forms. However, we find that GNNs trained by traditional GCL often risk capturing redundant graph features and thus may be brittle and provide sub-par performance in downstream tasks. We then propose a novel principle, termed adversarial-GCL (AD-GCL), which enables GNNs to avoid capturing redundant information during the training by optimizing adversarial graph augmentation strategies used in GCL. We pair AD-GCL with theoretical explanations and design a practical instantiation based on trainable edge-dropping graph augmentation. We experimentally validate AD-GCL by comparing with state-of-the-art GCL methods and achieve performance gains in semi-supervised, unsupervised and transfer learning settings using benchmark chemical and biological molecule datasets. </p> <p>Secondly, we consider a scenario where graph data is silo-ed across clients for GRL. We focus on two unique challenges encountered when applying distributed training to GRL: (i) client task heterogeneity and (ii) label scarcity. We propose a novel learning framework called federated self-supervised graph learning (FedSGL), which first utilizes a self-supervised objective to train GNNs in a federated fashion across clients and then, each client fine-tunes the obtained GNNs based on its local task and available labels. Our framework enables the federated GNN model to extract patterns from the common feature (attribute and graph topology) space without the need of labels or being biased by heterogeneous local tasks. Extensive empirical study of FedSGL on both node and graph classification tasks yields fruitful insights into how the level of feature / task heterogeneity, the adopted federated algorithm and the level of label scarcity affects the clients’ performance in their tasks.</p>
5

TEMPORAL DIET AND PHYSICAL ACTIVITY PATTERN ANALYSIS, UNSUPERVISED PERSON RE-IDENTIFICATION, AND PLANT PHENOTYPING

Jiaqi Guo (18108289) 06 March 2024 (has links)
<p dir="ltr">Both diet and physical activity are known to be risk factors for obesity and chronic diseases such as diabetes and metabolic syndrome. We explore a distance-based approach for clustering daily physical activity time series to find temporal physical activity patterns among U.S. adults (ages 20-65). We further extend this approach to integrate both diet and physical activity, and find joint temporal diet and physical activity patterns. Our experiments indicate that the integration of diet, physical activity, and time has the potential to discover joint patterns with association to health. </p><p dir="ltr">Unsupervised domain adaptive (UDA) person re-identification (re-ID) aims to learn identity information from labeled images in source domains and apply it to unlabeled images in a target domain. We propose a deep learning architecture called Synthesis Model Bank (SMB) to deal with illumination variation in unsupervised person re-ID. From our experiments, the proposed SMB outperforms other synthesis methods on several re-ID benchmarks. </p><p dir="ltr">Recent technology advancement introduced modern high-throughput methodologies such as Unmanned Aerial Vehicles (UAVs) to replace the traditional, labor-intensive phenotyping. For many UAV phenotyping analysis, the first step is to extract the smallest groups of plants called “plots” that have the same genotype. We propose an optimization-based, rotation-adaptive approach for extracting plots in a UAV RGB orthomosaic image. From our experiments, the proposed method achieves better plot extraction accuracy compared to existing approaches, and does not require training data.</p>
6

<b>DEVELOPING A RESPONSIBLE AI INSTRUCTIONAL FRAMEWORK FOR ENHANCING AI LEGISLATIVE EFFICACY IN THE UNITED STATES</b>

Kylie Ann Kristine Leonard (17583945) 09 December 2023 (has links)
<p dir="ltr">Artificial Intelligence (AI) is anticipated to exert a considerable impact on the global Gross Domestic Product (GDP), with projections estimating a contribution of 13 trillion dollars by the year 2030 (IEEE Board of Directors, 2019). In light of this influence on economic, societal, and intellectual realms, it is imperative for Policy Makers to acquaint themselves with the ongoing developments and consequential impacts of AI. The exigency of their preparedness lies in the potential for AI to evolve in unpredicted directions should proactive measures not be promptly instituted.</p><p dir="ltr">This paper endeavors to address a pivotal research question: " Do United States Policy Makers have a sufficient knowledgebase to understand Responsible AI in relation to Machine Learning to pass Artificial Intelligence legislation; and if they do not, how should a pedological instructional framework be created to give them the necessary knowledge?" The pursuit of answers to this question unfolded through the systematic review, gap analysis, and formulation of an instructional framework specifically tailored to elucidate the intricacies of Machine Learning. The findings of this study underscore the imperative for policymakers to undergo educational initiatives in the realm of artificial intelligence. Such educational interventions are deemed essential to empower policymakers with the requisite understanding for formulating effective regulatory frameworks that ensure the development of Responsible AI. The ethical dimensions inherent in this technological landscape warrant consideration, and policymakers must be equipped with the necessary cognitive tools to navigate these ethical quandaries adeptly.</p><p dir="ltr">In response to this exigency, the present study has undertaken the design and development of an instructional framework. This framework is conceived as a strategic intervention to address the evident cognitive gap existing among policymakers concerning the nuances of AI. By imparting an understanding of AI-related concepts, the framework aspires to cultivate a more informed and discerning governance ethos among policymakers, thus contributing to the responsible and ethical deployment of AI technologies.</p>
7

Generative Image-to-Image Translation with Applications in Computational Pathology

Fangda Li (17272816) 24 October 2023 (has links)
<p dir="ltr">Generative Image-to-Image Translation (I2IT) involves transforming an input image from one domain to another. Typically, this transformation retains the content in the input image while adjusting the domain-dependent style elements. Generative I2IT finds utility in a wide range of applications, yet its effectiveness hinges on adaptations to the unique characteristics of the data at hand. This dissertation pushes the boundaries of I2IT by applying it to stain-related problems in computational pathology. Particularly, the main contributions span two major applications of stain translation: H&E-to-H&E and H&E-to-IHC, each with its unique requirements and challenges. More specifically, the first contribution addresses the generalization challenge posed by the high variability in H&E stain appearances to any task-specific machine learning models. To this end, the Generative Stain Augmentation Network (G-SAN) is introduced to augment the training images in any downstream task with random and diverse H&E stain appearances. Experimental results demonstrate G-SAN’s ability to enhance model generalization across stain variations in downstream tasks. The second key contribution in this dissertation focuses on H&E-to-IHC stain translation. The major challenge in learning accurate H&E-to-IHC stain translation is the frequent and sometimes severe inconsistencies in the groundtruth H&E-IHC image pairs. To make training more robust to these inconsistencies, a novel contrastive learning based loss, named the Adaptive Supervised PatchNCE (ASP) loss is presented. Experimental results suggest that the proposed ASP-based framework outperforms the state-of-the-art in H&E-to-IHC stain translation by significant margins. Additionally, a new dataset for H&E-to-IHC translation – the Multi-IHC Stain Translation (MIST) dataset, is released to the public, featuring paired images from H&E to four different IHC stains. For future directions of generative I2IT in stain translation problems, a proof-of-concept study of applying the latest diffusion model based I2IT methods to the problem of virtual H&E staining is presented.</p>
8

DEEP LEARNING BASED METHODS FOR AUTOMATIC EXTRACTION OF SYNTACTIC PATTERNS AND THEIR APPLICATION FOR KNOWLEDGE DISCOVERY

Mdahsanul Kabir (16501281) 03 January 2024 (has links)
<p dir="ltr">Semantic pairs, which consist of related entities or concepts, serve as the foundation for comprehending the meaning of language in both written and spoken forms. These pairs enable to grasp the nuances of relationships between words, phrases, or ideas, forming the basis for more advanced language tasks like entity recognition, sentiment analysis, machine translation, and question answering. They allow to infer causality, identify hierarchies, and connect ideas within a text, ultimately enhancing the depth and accuracy of automated language processing.</p><p dir="ltr">Nevertheless, the task of extracting semantic pairs from sentences poses a significant challenge, necessitating the relevance of syntactic dependency patterns (SDPs). Thankfully, semantic relationships exhibit adherence to distinct SDPs when connecting pairs of entities. Recognizing this fact underscores the critical importance of extracting these SDPs, particularly for specific semantic relationships like hyponym-hypernym, meronym-holonym, and cause-effect associations. The automated extraction of such SDPs carries substantial advantages for various downstream applications, including entity extraction, ontology development, and question answering. Unfortunately, this pivotal facet of pattern extraction has remained relatively overlooked by researchers in the domains of natural language processing (NLP) and information retrieval.</p><p dir="ltr">To address this gap, I introduce an attention-based supervised deep learning model, ASPER. ASPER is designed to extract SDPs that denote semantic relationships between entities within a given sentential context. I rigorously evaluate the performance of ASPER across three distinct semantic relations: hyponym-hypernym, cause-effect, and meronym-holonym, utilizing six datasets. My experimental findings demonstrate ASPER's ability to automatically identify an array of SDPs that mirror the presence of these semantic relationships within sentences, outperforming existing pattern extraction methods by a substantial margin.</p><p dir="ltr">Second, I want to use the SDPs to extract semantic pairs from sentences. I choose to extract cause-effect entities from medical literature. This task is instrumental in compiling various causality relationships, such as those between diseases and symptoms, medications and side effects, and genes and diseases. Existing solutions excel in sentences where cause and effect phrases are straightforward, such as named entities, single-word nouns, or short noun phrases. However, in the complex landscape of medical literature, cause and effect expressions often extend over several words, stumping existing methods, resulting in incomplete extractions that provide low-quality, non-informative, and at times, conflicting information. To overcome this challenge, I introduce an innovative unsupervised method for extracting cause and effect phrases, PatternCausality tailored explicitly for medical literature. PatternCausality employs a set of cause-effect dependency patterns as templates to identify the key terms within cause and effect phrases. It then utilizes a novel phrase extraction technique to produce comprehensive and meaningful cause and effect expressions from sentences. Experiments conducted on a dataset constructed from PubMed articles reveal that PatternCausality significantly outperforms existing methods, achieving a remarkable order of magnitude improvement in the F-score metric over the best-performing alternatives. I also develop various PatternCausality variants that utilize diverse phrase extraction methods, all of which surpass existing approaches. PatternCausality and its variants exhibit notable performance improvements in extracting cause and effect entities in a domain-neutral benchmark dataset, wherein cause and effect entities are confined to single-word nouns or noun phrases of one to two words.</p><p dir="ltr">Nevertheless, PatternCausality operates within an unsupervised framework and relies heavily on SDPs, motivating me to explore the development of a supervised approach. Although SDPs play a pivotal role in semantic relation extraction, pattern-based methodologies remain unsupervised, and the multitude of potential patterns within a language can be overwhelming. Furthermore, patterns do not consistently capture the broader context of a sentence, leading to the extraction of false-positive semantic pairs. As an illustration, consider the hyponym-hypernym pattern <i>the w of u</i> which can correctly extract semantic pairs for a sentence like <i>the village of Aasu</i> but fails to do so for the phrase <i>the moment of impact</i>. The root cause of this limitation lies in the pattern's inability to capture the nuanced meaning of words and phrases in a sentence and their contextual significance. These observations have spurred my exploration of a third model, DepBERT which constitutes a dependency-aware supervised transformer model. DepBERT's primary contribution lies in introducing the underlying dependency structure of sentences to a language model with the aim of enhancing token classification performance. To achieve this, I must first reframe the task of semantic pair extraction as a token classification problem. The DepBERT model can harness both the tree-like structure of dependency patterns and the masked language architecture of transformers, marking a significant milestone, as most large language models (LLMs) predominantly focus on semantics and word co-occurrence while neglecting the crucial role of dependency architecture.</p><p dir="ltr">In summary, my overarching contributions in this thesis are threefold. First, I validate the significance of the dependency architecture within various components of sentences and publish SDPs that incorporate these dependency relationships. Subsequently, I employ these SDPs in a practical medical domain to extract vital cause-effect pairs from sentences. Finally, my third contribution distinguishes this thesis by integrating dependency relations into a deep learning model, enhancing the understanding of language and the extraction of valuable semantic associations.</p>
9

TEMPORAL EVENT MODELING OF SOCIAL HARM WITH HIGH DIMENSIONAL AND LATENT COVARIATES

Xueying Liu (13118850) 09 September 2022 (has links)
<p>    </p> <p>The counting process is the fundamental of many real-world problems with event data. Poisson process, used as the background intensity of Hawkes process, is the most commonly used point process. The Hawkes process, a self-exciting point process fits to temporal event data, spatial-temporal event data, and event data with covariates. We study the Hawkes process that fits to heterogeneous drug overdose data via a novel semi-parametric approach. The counting process is also related to survival data based on the fact that they both study the occurrences of events over time. We fit a Cox model to temporal event data with a large corpus that is processed into high dimensional covariates. We study the significant features that influence the intensity of events. </p>
10

Multimodal Data Management in Open-world Environment

K M A Solaiman (16678431) 02 August 2023 (has links)
<p>The availability of abundant multimodal data, including textual, visual, and sensor-based information, holds the potential to improve decision-making in diverse domains. Extracting data-driven decision-making information from heterogeneous and changing datasets in real-world data-centric applications requires achieving complementary functionalities of multimodal data integration, knowledge extraction and mining, situationally-aware data recommendation to different users, and uncertainty management in the open-world setting. To achieve a system that encompasses all of these functionalities, several challenges need to be effectively addressed: (1) How to represent and analyze heterogeneous source contents and application context for multimodal data recommendation? (2) How to predict and fulfill current and future needs as new information streams in without user intervention? (3) How to integrate disconnected data sources and learn relevant information to specific mission needs? (4) How to scale from processing petabytes of data to exabytes? (5) How to deal with uncertainties in open-world that stem from changes in data sources and user requirements?</p> <p><br></p> <p>This dissertation tackles these challenges by proposing novel frameworks, learning-based data integration and retrieval models, and algorithms to empower decision-makers to extract valuable insights from diverse multimodal data sources. The contributions of this dissertation can be summarized as follows: (1) We developed SKOD, a novel multimodal knowledge querying framework that overcomes the data representation, scalability, and data completeness issues while utilizing streaming brokers and RDBMS capabilities with entity-centric semantic features as an effective representation of content and context. Additionally, as part of the framework, a novel text attribute recognition model called HART was developed, which leveraged language models and syntactic properties of large unstructured texts. (2) In the SKOD framework, we incrementally proposed three different approaches for data integration of the disconnected sources from their semantic features to build a common knowledge base with the user information need: (i) EARS: A mediator approach using schema mapping of the semantic features and SQL joins was proposed to address scalability challenges in data integration; (ii) FemmIR: A data integration approach for more susceptible and flexible applications, that utilizes neural network-based graph matching techniques to learn coordinated graph representations of the data. It introduces a novel graph creation approach from the features and a novel similarity metric among data sources; (iii) WeSJem: This approach allows zero-shot similarity matching and data discovery by using contrastive learning<br> to embed data samples and query examples in a high-dimensional space using features as a novel source of supervision instead of relevance labels. (3) Finally, to manage uncertainties in multimodal data management for open-world environments, we characterized novelties in multimodal information retrieval based on data drift. Moreover, we proposed a novelty detection and adaptation technique as an augmentation to WeSJem.<br> </p> <p>The effectiveness of the proposed frameworks, models, and algorithms was demonstrated<br> through real-world system prototypes that solved open problems requiring large-scale human<br> endeavors and computational resources. Specifically, these prototypes assisted law enforcement officers in automating investigations and finding missing persons.<br> </p>

Page generated in 0.5285 seconds