Spelling suggestions: "subject:"[een] GRAPHS"" "subject:"[enn] GRAPHS""
291 |
Expansion, Random Graphs and the Automatizability of ResolutionZabawa, Daniel Michael 25 July 2008 (has links)
We explore the relationships between the computational problem of recognizing expander graphs, and the problem of efficiently approximating proof length in the well-known system of \emph{resolution}. This program builds upon known connections between graph expansion and resolution lower bounds.
A proof system $P$ is \emph{(quasi-)automatizable} if there is a search algorithm which finds a $P$-proof of a given formula $f$ in time (quasi)polynomial in the length of a shortest $P$-proof of $f$. It is open whether resolution is (quasi-)automatizable. We prove several conditional non-automatizability results for resolution modulo new conjectures concerning the complexity of identifying bipartite expander graphs. Our reductions use a natural family of formulas and exploit the well-known relationships between expansion and length of resolution proofs. Our hardness assumptions are unsupported; we survey known results as progress towards establishing their plausibility. The major contribution is a conditional hardness result for the quasi-automatizability of resolution.
|
292 |
Causal assumptions : some responses to Nancy CartwrightKristtorn, Sonje 31 July 2007
The theories of causality put forward by Pearl and the Spirtes-Glymour-Scheines group have entered the mainstream of statistical thinking. These theories show that under ideal conditions, causal relationships can be inferred from purely statistical observational data. Nancy Cartwright advances certain arguments against these causal inference algorithms: the well-known factory example argument against the Causal Markov condition and an argument against faithfulness. We point to the dependence of the first argument on undefined categories external to the technical apparatus of causal inference algorithms. We acknowledge the possible practical implication of her second argument, yet we maintain, with respect to both arguments, that this variety of causal inference, if not universal, is nonetheless eminently useful. Cartwright argues against assumptions that are essential not only to causal inference algorithms but to causal inference generally, even if, as she contends, they are not without exception and that the same is true of other, likewise essential, assumptions. We indicate that causal inference is an iterative process and that causal inference algorithms assist, rather than replace, that process as performed by human beings.
|
293 |
Expansion, Random Graphs and the Automatizability of ResolutionZabawa, Daniel Michael 25 July 2008 (has links)
We explore the relationships between the computational problem of recognizing expander graphs, and the problem of efficiently approximating proof length in the well-known system of \emph{resolution}. This program builds upon known connections between graph expansion and resolution lower bounds.
A proof system $P$ is \emph{(quasi-)automatizable} if there is a search algorithm which finds a $P$-proof of a given formula $f$ in time (quasi)polynomial in the length of a shortest $P$-proof of $f$. It is open whether resolution is (quasi-)automatizable. We prove several conditional non-automatizability results for resolution modulo new conjectures concerning the complexity of identifying bipartite expander graphs. Our reductions use a natural family of formulas and exploit the well-known relationships between expansion and length of resolution proofs. Our hardness assumptions are unsupported; we survey known results as progress towards establishing their plausibility. The major contribution is a conditional hardness result for the quasi-automatizability of resolution.
|
294 |
Scalable and Reliable Searching in Unstructured Peer-to-peer SystemsIoannidis, Efstratios 01 March 2010 (has links)
The subject of this thesis is searching in unstructured peer-to-peer systems.
Such systems have been used for a variety of different applications, including
file-sharing, content distribution and video streaming. These applications have been very popular; they contribute to a large percentage of today's Internet traffic and their users typically number in the millions.
By searching, we refer to the process of locating content stored by peers.
Searching in unstructured peer-to-peer systems poses a challenge because of high churn:
both the topology and the content stored by peers can change quickly as peers arrive and depart, while the network formed under this churn process can be arbitrary at any point in time. As a result, a search mechanism must operate without any a priori assumptions on this dynamic topology.
Ideally,
a search mechanism should be scalable: as, typically, peers have limited bandwidth, the traffic generated by queries should not grow significantly as the peer population increases.
Moreover, a search mechanism should also be reliable: if certain content is in the system, searching should locate it with reasonable guarantees. These two goals can be conflicting, as generating more queries increases a mechanism's reliability but decreases its scalability. Hence, a fundamental question regarding searching in unstructured systems is whether a mechanism can exhibit both properties, despite the network's dynamic and arbitrary nature.
In this thesis, we show this is indeed the case, by proposing a novel mechanism that is both scalable and reliable.
This is shown under a mathematical model that captures the evolution of both network and content in an unstructured system, but is also verified through simulations. To the best of our knowledge, this is the first provably scalable and reliable search mechanism for unstructured peer-to-peer systems.
In addition to the above problem, we also consider a hybrid peer-to-peer system, in which the peer-to-peer network co-exists with a central server. The purpose of this hybrid architecture is to reduce the server's traffic by delegating
part of it to its clients ---\emph{i.e.}, the peers:
a peer wishing to retrieve certain content first propagates a query over the peer-to-peer network, and downloads the content from the server only if the query fails. This hybrid architecture can be used to partially decentralize a content distribution server, a search engine, an online encyclopedia, etc.
The trade-off between scalability and reliability translates, in the hybrid case, to a trade-off between the peer and the server traffic loads. We propose a search mechanism under which both loads remain bounded as the peer population grows. This is surprising, and has an important implication: one can construct hybrid peer-to-peer systems that can handle traffic generated by a large (unbounded) peer population, even when both the server and peer bandwidth capacities are limited. Again, this is proved under a model capturing the hybrid system's dynamic nature and verified through simulations. To the best of our knowledge, our work is the first to show that hybrid systems with such properties exist.
|
295 |
Core Structures in Random Graphs and HypergraphsSato, Cristiane Maria January 2013 (has links)
The k-core of a graph is its maximal subgraph with minimum degree at least k. The study of k-cores in random graphs was initiated by Bollobás in 1984 in connection to k-connected subgraphs of random graphs. Subsequently, k-cores and their properties have been extensively investigated in random graphs and hypergraphs, with the determination of the threshold for the emergence of a giant k-core, due to Pittel, Spencer and Wormald, as one of the most prominent results.
In this thesis, we obtain an asymptotic formula for the number of 2-connected graphs, as well as 2-edge-connected graphs, with given number of vertices and edges in the sparse range by exploiting properties of random 2-cores. Our results essentially cover the whole range for which asymptotic formulae were not described before. This is joint work with G. Kemkes and N. Wormald. By defining and analysing a core-type structure for uniform hypergraphs, we obtain an asymptotic formula for the number of connected 3-uniform hypergraphs with given number of vertices and edges in a sparse range. This is joint work with N. Wormald.
We also examine robustness aspects of k-cores of random graphs. More specifically, we investigate the effect that the deletion of a random edge has in the k-core as follows: we delete a random edge from the k-core, obtain the k-core of the resulting graph, and compare its order with the original k-core. For this investigation we obtain results for the giant k-core for Erdős-Rényi random graphs as well as for random graphs with minimum degree at least k and given number of vertices and edges.
|
296 |
Hamilton Paths in Generalized Petersen GraphsPensaert, William January 2002 (has links)
This thesis puts forward the conjecture that for <i>n</i> > 3<i>k</i> with <i>k</i> > 2, the generalized Petersen graph, <i>GP</i>(<i>n,k</i>) is Hamilton-laceable if <i>n</i> is even and <i>k</i> is odd, and it is Hamilton-connected otherwise. We take the first step in the proof of this conjecture by proving the case <i>n</i> = 3<i>k</i> + 1 and <i>k</i> greater than or equal to 1. We do this mainly by means of an induction which takes us from <i>GP</i>(3<i>k</i> + 1, <i>k</i>) to <i>GP</i>(3(<i>k</i> + 2) + 1, <i>k</i> + 2). The induction takes the form of mapping a Hamilton path in the smaller graph piecewise to the larger graph an inserting subpaths we call <i>rotors</i> to obtain a Hamilton path in the larger graph.
|
297 |
Self-Complementary Arc-Transitive Graphs and Their ImpostersMullin, Natalie 23 January 2009 (has links)
This thesis explores two infinite families of self-complementary arc-transitive graphs: the familiar Paley graphs and the newly discovered Peisert graphs. After studying both families, we examine a result of Peisert which proves the Paley and Peisert graphs are the only self-complementary arc transitive graphs other than one exceptional graph. Then we consider other families of graphs which share many properties with the Paley and Peisert graphs. In particular, we construct an infinite family of self-complementary strongly regular graphs from affine planes. We also investigate the pseudo-Paley graphs of Weng, Qiu, Wang, and Xiang. Finally, we prove a lower bound on the number of maximal cliques of certain pseudo-Paley graphs, thereby distinguishing them from Paley graphs of the same order.
|
298 |
Linear Programming Tools and Approximation Algorithms for Combinatorial OptimizationPritchard, David January 2009 (has links)
We study techniques, approximation algorithms, structural properties and lower bounds related to applications of linear programs in combinatorial optimization. The following "Steiner tree problem" is central: given a graph with a distinguished subset of required vertices, and costs for each edge, find a minimum-cost subgraph that connects the required vertices. We also investigate the areas of network design, multicommodity flows, and packing/covering integer programs. All of these problems are NP-complete so it is natural to seek approximation algorithms with the best provable approximation ratio.
Overall, we show some new techniques that enhance the already-substantial corpus of LP-based approximation methods, and we also look for limitations of these techniques.
The first half of the thesis deals with linear programming relaxations for the Steiner tree problem. The crux of our work deals with hypergraphic relaxations obtained via the well-known full component decomposition of Steiner trees; explicitly, in this view the fundamental building blocks are not edges, but hyperedges containing two or more required vertices. We introduce a new hypergraphic LP based on partitions. We show the new LP has the same value as several previously-studied hypergraphic ones; when no Steiner nodes are adjacent, we show that the value of the well-known bidirected cut relaxation is also the same. A new partition uncrossing technique is used to demonstrate these equivalences, and to show that extreme points of the new LP are well-structured. We improve the best known integrality gap on these LPs in some special cases. We show that several approximation algorithms from the literature on Steiner trees can be re-interpreted through linear programs, in particular our hypergraphic relaxation yields a new view of the Robins-Zelikovsky 1.55-approximation algorithm for the Steiner tree problem.
The second half of the thesis deals with a variety of fundamental problems in combinatorial optimization. We show how to apply the iterated LP relaxation framework to the problem of multicommodity integral flow in a tree, to get an approximation ratio that is asymptotically optimal in terms of the minimum capacity. Iterated relaxation gives an infeasible solution, so we need to finesse it back to feasibility without losing too much value. Iterated LP relaxation similarly gives an O(k^2)-approximation algorithm for packing integer programs with at most k occurrences of each variable; new LP rounding techniques give a k-approximation algorithm for covering integer programs with at most k variable per constraint. We study extreme points of the standard LP relaxation for the traveling salesperson problem and show that they can be much more complex than was previously known. The k-edge-connected spanning multi-subgraph problem has the same LP and we prove a lower bound and conjecture an upper bound on the approximability of variants of this problem. Finally, we show that for packing/covering integer programs with a bounded number of constraints, for any epsilon > 0, there is an LP with integrality gap at most 1 + epsilon.
|
299 |
Hamilton Paths in Generalized Petersen GraphsPensaert, William January 2002 (has links)
This thesis puts forward the conjecture that for <i>n</i> > 3<i>k</i> with <i>k</i> > 2, the generalized Petersen graph, <i>GP</i>(<i>n,k</i>) is Hamilton-laceable if <i>n</i> is even and <i>k</i> is odd, and it is Hamilton-connected otherwise. We take the first step in the proof of this conjecture by proving the case <i>n</i> = 3<i>k</i> + 1 and <i>k</i> greater than or equal to 1. We do this mainly by means of an induction which takes us from <i>GP</i>(3<i>k</i> + 1, <i>k</i>) to <i>GP</i>(3(<i>k</i> + 2) + 1, <i>k</i> + 2). The induction takes the form of mapping a Hamilton path in the smaller graph piecewise to the larger graph an inserting subpaths we call <i>rotors</i> to obtain a Hamilton path in the larger graph.
|
300 |
Postman Problems on Mixed GraphsZaragoza Martinez, Francisco Javier January 2003 (has links)
The <i>mixed postman problem</i> consists of finding a minimum cost tour of a mixed graph <i>M</i> = (<i>V</i>,<i>E</i>,<i>A</i>) traversing all its edges and arcs at least once. We prove that two well-known linear programming relaxations of this problem are equivalent. The <i>extra cost</i> of a mixed postman tour <i>T</i> is the cost of <i>T</i> minus the cost of the edges and arcs of <i>M</i>. We prove that it is <i>NP</i>-hard to approximate the minimum extra cost of a mixed postman tour.
A related problem, known as the <i>windy postman problem</i>, consists of finding a minimum cost tour of an undirected graph <i>G</i>=(<i>V</i>,<i>E</i>) traversing all its edges at least once, where the cost of an edge depends on the direction of traversal. We say that <i>G</i> is <i>windy postman perfect</i> if a certain <i>windy postman polyhedron O</i> (<i>G</i>) is integral. We prove that series-parallel undirected graphs are windy postman perfect, therefore solving a conjecture of Win.
Given a mixed graph <i>M</i> = (<i>V</i>,<i>E</i>,<i>A</i>) and a subset <i>R</i> ⊆ <i>E</i> ∪ <i>A</i>, we say that a mixed postman tour of <i>M</i> is <i>restricted</i> if it traverses the elements of <i>R</i> exactly once. The <i>restricted mixed postman problem</i> consists of finding a minimum cost restricted tour. We prove that this problem is <i>NP</i>-hard even if <i>R</i>=<i>A</i> and we restrict <i>M</i> to be planar, hence solving a conjecture of Veerasamy. We also prove that it is <i>NP</i>-complete to decide whether there exists a restricted tour even if <i>R</i>=<i>E</i> and we restrict <i>M</i> to be planar.
The <i>edges postman problem</i> is the special case of the restricted mixed postman problem when <i>R</i>=<i>A</i>. We give a new class of valid inequalities for this problem. We introduce a relaxation of this problem, called the <i>b-join problem</i>, that can be solved in polynomial time. We give an algorithm which is simultaneously a 4/3-approximation algorithm for the edges postman problem, and a 2-approximation algorithm for the extra cost of a tour.
The <i>arcs postman problem</i> is the special case of the restricted mixed postman problem when <i>R</i>=<i>E</i>. We introduce a class of necessary conditions for <i>M</i> to have an arcs postman tour, and we give a polynomial-time algorithm to decide whether one of these conditions holds. We give linear programming formulations of this problem for mixed graphs arising from windy postman perfect graphs, and mixed graphs whose arcs form a forest.
|
Page generated in 0.0542 seconds