• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 29
  • 12
  • 9
  • 7
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 224
  • 224
  • 224
  • 63
  • 24
  • 23
  • 22
  • 21
  • 18
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Investigations of rc-loaded bow-tie antennas for impulse ground penetrating radar applications

Su, Hong 19 September 2006 (has links)
This thesis reports on the investigations of resistive-capacitive (RC) loaded bow-tie antennas with special emphasis on impulse ground penetrating radar applications. Impulse radiation for ground penetrating radar is a challenging research topic because of the unique problem arising from impulse radiation: late-time ringing, which usually masks the important echo signals from the targets. While resistive loading is a common solution for eliminating late-time ringing, use of resistive loading typically sacrifices the radiation efficiency. In this thesis, a resistive-capacitive loading technique is investigated for a circular bow-tie antenna in the attempt to reduce/suppress the late-time ringing as well as to maintain a relatively high radiation efficiency. To implement the system, a microstrip differentiator, which converts a monopulse into a Gaussian-like monocycle to be used as input impulse, is presented. Further, specially designed coplanar waveguide/coplanar strip (CPW/CPS) baluns embedded with Chebyshev transformers of characteristic impedance up to 120 have been constructed and tested. To evaluate the system, instead of using the conventional peak voltage value of the radiated waveform, average radiated energy, average ringing energy, relative radiation efficiency and relative ringing efficiency are utilized and these metrics are easily established using low-cost low-sensitivity probes. Measurement results show that the RC-loading scheme is functioning as expected and the impulse system as a whole is capable of reducing the late-time ringing energy to 50% while maintaining average radiation energy as 83% when compared with capacitive loading cases.
22

Nondestructive testing of concrete bridge decks using ground penetrating radar and the chain drag method

Scheff, Jerry J. January 1998 (has links)
Thesis (M.S.)--West Virginia University, 1998. / Title from document title page. Document formatted into pages; contains xv, 144 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 122-124).
23

Feature detection algorithms in computed images

Gurbuz, Ali Cafer January 2008 (has links)
Thesis (Ph.D.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: McClellan, James H.; Committee Member: Romberg, Justin K.; Committee Member: Scott, Waymond R. Jr.; Committee Member: Vela, Patricio A.; Committee Member: Vidakovic, Brani
24

2D and 3D GPR imaging of wood and fiber reinforced polymer composites

Pyakurel, Sandeep. January 2009 (has links)
Thesis (Ph. D.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xx, 211 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 208-211).
25

Hydrostratigraphic characterization of a coastal aquifer system in northern Monterey County, California using high-resolution seismic and ground penetrating radar profiling

Underwood, Deborah H. January 1998 (has links)
Thesis (M.S.)--University of California, Santa Cruz, 1998. / Typescript. Includes bibliographical references (leaves 42-45).
26

Correlation based landmine detection technique /

Mata, Raman Deep. January 2004 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2004. / Typescript. Includes bibliographical references (leaves 75-78). Also available on the Internet.
27

Nondestructive evaluation of fiber reinforced polymer bridge decks using ground penetrating radar and infrared thermography

Hing, Cheng Lok. January 2006 (has links)
Thesis (Ph. D.)--West Virginia University, 2006. / Title from document title page. Document formatted into pages; contains xvii, 167 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 154-159).
28

Correlation based landmine detection technique

Mata, Raman Deep. January 2004 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2004. / Typescript. Includes bibliographical references (leaves 75-78). Also available on the Internet.
29

Development of unexploded ordnances (UXO) detection and classification system using ultra wide bandwidth fully polarimetric ground penetrating radar (GPR)

Youn, Hyoung-Sun, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 191-196).
30

Radar sounding of Lucus Planum, Mars, by MARSIS

Orosei, Roberto, Rossi, Angelo Pio, Cantini, Federico, Caprarelli, Graziella, Carter, Lynn M., Papiano, Irene, Cartacci, Marco, Cicchetti, Andrea, Noschese, Raffaella 07 1900 (has links)
Lucus Planum, extending for a radius of approximately 500km around 181 degrees E, 5 degrees S, is part of the Medusae Fossae Formation (MFF), a set of several discontinuous deposits of fine-grained, friable material straddling across the Martian highland-lowland boundary. The MFF has been variously hypothesized to consist of pyroclastic flows, pyroclastic airfall, paleopolar deposits, or atmospherically deposited icy dust driven by climate cycles. Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), a low-frequency subsurface-sounding radar carried by European Space Agency's Mars Express, acquired 238 radar swaths across Lucus Planum, providing sufficient coverage for the study of its internal structure and dielectric properties. Subsurface reflections were found only in three areas, marked by a distinctive surface morphology, while the central part of Lucus Planum appears to be made of radar-attenuating material preventing the detection of basal echoes. The bulk dielectric properties of these areas were estimated and compared with those of volcanic rocks and ice-dust mixtures. Previous interpretations that east Lucus Planum and the deposits on the northwestern flanks of Apollinaris Patera consist of high-porosity pyroclastic material are strongly supported by the new results. The northwestern part of Lucus Planum is likely to be much less porous, although interpretations about the nature of the subsurface materials are not conclusive. The exact origin of the deposits cannot be constrained by radar data alone, but our results for east Lucus Planum are consistent with an overall pyroclastic origin, likely linked to Tharsis Hesperian and Amazonian activity. Plain Language Summary Lobe-shaped thick deposits, collectively known as the Medusae Fossae Formation, are found west of the Olympus Mons volcano on Mars. Visual observations of these smooth and relatively unremarkably looking materials have not definitively determined how they formed with hypotheses ranging from volcanic ash to remnants of a materials deposited at a previous location of the north pole, to accumulation of atmospheric dust. In this study we used the ground penetrating radar on board Mars Express to see through these deposits to derive information about Lucus Planum, the central lobe of the Medusae Fossae Formation. Through our analysis of the way the radar waves were reflected by subsurface layering, we concluded that the materials forming Lucus Planum are spatially variable: the east and west portions of the deposits are highly porous and probably composed of ashes and rocks from nearby volcanoes. In the north-west the deposits are much denser, but we could not unequivocally define their nature. Finally, our instrument could not detect signals from the central part of Lucus Planum, which suggests yet a different component in the deposits. This diversity points to a dynamic geological history in this unique region of Mars.

Page generated in 0.0546 seconds