Spelling suggestions: "subject:"[een] HIERARCHICAL PARTITIONING"" "subject:"[enn] HIERARCHICAL PARTITIONING""
1 |
Post-fire Tree Establishment Patterns at the Subalpine Forest-Alpine Tundra Ecotone: A Case Study in Mount Rainier National ParkStueve, Kirk M. 2009 August 1900 (has links)
Climatic changes have induced striking altitudinal and latitudinal vegetation
shifts throughout history. These shifts will almost certainly recur in the future;
threatening other flora and fauna, and influencing climate feedback loops. Changes in
the spatial distribution of vegetation are most conspicuous at physiognomically distinct
ecotones, particularly between the subalpine forest and alpine tundra. Traditionally,
ecological research has linked abiotic variables with the position of this ecotone (e.g.,
cold temperatures inhibit tree survival at high elevations). Thus, the prevailing
assumption states that this ecotone is in equilibrium or quasi-equilibrium with the
surrounding physical environment and that any dynamic shifts express direct linkages
with the physical environment.
This dissertation employs a landscape ecology approach to examine the abiotic
and biotic ecological mechanisms most important in controlling tree establishment at this
ecotone. The study site is on the western slopes of Mount Rainier, which was severely
burned by a slash fire in 1930. Therefore, a crucial underlying assumption is that the ecological mechanisms controlling tree establishment are similar at disturbed and
undisturbed sites. I exploited the use of 1970 CORONA satellite imagery and 2003
aerial photography to map 33 years of changes in arboreal vegetation. I created detailed
maps of abiotic variables from a LIDAR-based DEM and biotic variables from classified
remotely sensed data. I linked tree establishment patterns with abiotic and biotic
variables in a GIS, and analyzed the correlations with standard logistic regression and
logistic regression in the hierarchical partitioning framework at multiple spatial
resolutions.
A biotic factor (proximity to previously existing trees) was found to exert a
strong influence on tree establishment patterns; equaling and in most cases exceeding the
significance of the abiotic factors. The abiotic setting was more important at restricted
spatial extents near the extreme upper limits of the ecotone and when analyzing coarse
resolution data, but even in these cases proximity to existing trees remained significant.
The strong overall influence of proximity to existing trees on patterns of tree
establishment is unequivocal. If the underlying assumption of this dissertation is true, it
challenges the long-held ecological assumption that vegetation in mountainous terrain is
in equilibrium with and most strongly influenced by the surrounding physical
environment.
|
2 |
[en] HIERARCHICAL NEURO-FUZZY BSP-MAMDANI MODEL / [pt] MODELO NEURO-FUZZY HIERÁRQUICOS BSP MAMDANIROSINI ANTONIO MONTEIRO BEZERRA 04 November 2002 (has links)
[pt] Esta dissertação investiga a utilização de sistemas Neuro-
Fuzzy Hierárquicos BSP (Binary Space Partitioning) para
aplicações em classificação de padrões, previsão, sistemas
de controle e extração de regras fuzzy. O objetivo é criar
um modelo Neuro-Fuzzy Hierárquico BSP do tipo Mamdani a
partir do modelo Neuro-Fuzzy Hierárquico BSP Class
(NFHB-Class) que é capaz de criar a sua própria estrutura
automaticamente e extrair conhecimento de uma base de dados
através de regras fuzzy, lingüisticamente interpretáveis,
que explicam a estrutura dos dados. Esta dissertação
consiste de quatros etapas principais: estudo dos principais
sistemas hierárquicos; análise do sistema Neuro-Fuzzy
Hierárquico BSP Class, definição e implementação do modelo
NFHB-Mamdani e estudo de casos. No estudo dos principais
sistemas hierárquicos é efetuado um levantamento
bibliográfico na área. São investigados, também, os
principais modelos neuro-fuzzy utilizados em sistemas de
controle - Falcon e o Nefcon. Na análise do sistema NFHB-
Class, é verificado o aprendizado da estrutura, o
particionamento recursivo, a possibilidade de se ter um
maior número de entrada - em comparação com outros sistemas
neuro-fuzzy - e regras fuzzy recursivas. O sistema NFHB-
Class é um modelo desenvolvido especificamente para
classificação de padrões, como possui várias saídas, não é
possível utilizá-lo em aplicações em controle e em
previsão. Para suprir esta deficiência, é criado um novo
modelo que contém uma única saída. Na terceira etapa é
definido um novo modelo Neuro-Fuzzy Hierárquico BSP com
conseqüentes fuzzy (NFHB-Mamdani), cuja implementação
utiliza a arquitetura do NFHBClass para a fase do
aprendizado, teste e validação, porém, com os conseqüentes
diferentes, modificando a estratégia de definição dos
conseqüentes das regras. Além de sua utilização em
classificação de padrões, previsão e controle, o sistema
NFHB-Mamdani é capaz de extrair conhecimento de uma base de
dados em forma de regras do tipo SE ENTÃO. No estudo de
casos são utilizadas duas bases de dados típicas para
aplicações em classificação: Wine e o Iris. Para previsão
são utilizadas séries de cargas elétricas de seis
companhias brasileiras diferentes: Copel, Cemig, Light,
Cerj, Eletropaulo e Furnas. Finalmente, para testar o
desempenho do sistema em controle faz-se uso de uma planta
de terceira ordem como processo a controlar. Os resultados
obtidos para classificação, na maioria dos casos, são
superiores aos melhores resultados encontrados pelos outros
modelos e algoritmos aos quais foram comparados. Para
previsão de cargas elétricas, os resultados obtidos estão
sempre entre os melhores resultados fornecidos por outros
modelos aos quais formam comparados. Quanto à aplicação em
controle, o modelo NFHB-Mamdani consegue controlar, de forma
satisfatória, o processo utilizado para teste. / [en] This paper investigates the use of Binary Space
Partitioning (BSP) Hierarchical Neuro-Fuzzy Systems for
applications in pattern classification, forecast, control
systems and obtaining of fuzzy rules. The goal is to create
a BSP Hierarchical Neuro-Fuzzy Model of the Mamdani type
from the BSP Hierarchical Neuro-Fuzzy Class (NFHB-Class)
which is able to create its own structure automatically and
obtain knowledge from a data base through fuzzy rule,
interpreted linguistically, that explain the data structure.
This paper is made up of four main parts: study of the main
Hierarchical Systems; analysis of the BSP Hierarchical
Neuro-Fuzzy Class System, definition and implementation of
the NFHB-Mamdani model, and case studies. A bibliographical
survey is made in the study of the main Hierarchical
Systems. The main Neuro-Fuzzy Models used in control
systems - Falcon and Nefcon -are also investigated.
In the NFHB-Class System, the learning of the structure is
verified, as well as, the recursive partitioning, the
possibility of having a greater number of inputs in
comparison to other Neuro-Fuzzy systems and recursive fuzzy
rules. The NFHB-Class System is a model developed
specifically for pattern classification, since it has
various outputs, it is not possible to use it in control
application and forecast. To make up for this deficiency, a
new unique output model is developed. In the third part, a
new BSP Hierarchical Neuro-Fuzzy model is defined with
fuzzy consequents (NFHB-Mamdani), whose implementation uses
the NFHB-Class architecture for the learning, test, and
validation phase, yet with the different consequents,
modifying the definition strategy of the consequents of the
rules. Aside from its use in pattern classification,
forecast, and control, the NFHB-Mamdani system is capable of
obtaining knowledge from a data base in the form of rules
of the type IF THEN. Two typical data base for application
in classification are used in the case studies: Wine and
Iris. Electric charge series of six different Brazilian
companies are used for forecasting: Copel, Cemig, Light,
Cerj, Eletropaulo and Furnas. Finally, to test the
performance of the system in control, a third order plant
is used as a process to be controlled. The obtained results
for classification, in most cases, are better than the best
results found by other models and algorithms to which they
were compared. For forecast of electric charges, the
obtained results are always among the best supplied by
other models to which they were compared. Concerning its
application in control, the NFHB-Mamdani model is able to
control, reasonably, the process used for test.
|
Page generated in 0.0298 seconds