Spelling suggestions: "subject:"[een] JACOBI EQUATION"" "subject:"[enn] JACOBI EQUATION""
1 |
Long-wavelength cosmological perturbationsParry, Joseph January 1994 (has links)
No description available.
|
2 |
Optimal Control Designs for Systems with Input Saturations and Rate LimitersUmemura, Yoshio, Sakamoto, Noboru, Yuasa, Yuto January 2010 (has links)
No description available.
|
3 |
On the Solution of the Hamilton-Jacobi Equation by the Method of Separation of VariablesBruce, Aaron January 2000 (has links)
The method of separation of variables facilitates the integration of the Hamilton-Jacobi equation by reducing its solution to a series of quadratures in the separable coordinates. The case in which the metric tensor is diagonal in the separable coordinates, that is, orthogonal separability, is fundamental. Recent theory by Benenti has established a concise geometric (coordinate-independent) characterisation of orthogonal separability of the Hamilton-Jacobi equation on a pseudoRiemannian manifold. It generalises an approach initiated by Eisenhart and developed by Kalnins and Miller. Benenti has shown that the orthogonal separability of a system via a point transformation is equivalent to the existence of a Killing tensor with real simple eigen values and orthogonally integrable eigenvectors. Applying a moving frame formalism, we develop a method that produces the orthogonal separable coordinates for low dimensional Hamiltonian systems. The method is applied to a two dimensional Riemannian manifold of arbitrary curvature. As an illustration, we investigate Euclidean 2-space, and the two dimensional surfaces of constant curvature, recovering known results. Using our formalism, we also derive the known superseparable potentials for Euclidean 2-space. Some of the original results presented in this thesis were announced in [8, 9, 10].
|
4 |
On the Solution of the Hamilton-Jacobi Equation by the Method of Separation of VariablesBruce, Aaron January 2000 (has links)
The method of separation of variables facilitates the integration of the Hamilton-Jacobi equation by reducing its solution to a series of quadratures in the separable coordinates. The case in which the metric tensor is diagonal in the separable coordinates, that is, orthogonal separability, is fundamental. Recent theory by Benenti has established a concise geometric (coordinate-independent) characterisation of orthogonal separability of the Hamilton-Jacobi equation on a pseudoRiemannian manifold. It generalises an approach initiated by Eisenhart and developed by Kalnins and Miller. Benenti has shown that the orthogonal separability of a system via a point transformation is equivalent to the existence of a Killing tensor with real simple eigen values and orthogonally integrable eigenvectors. Applying a moving frame formalism, we develop a method that produces the orthogonal separable coordinates for low dimensional Hamiltonian systems. The method is applied to a two dimensional Riemannian manifold of arbitrary curvature. As an illustration, we investigate Euclidean 2-space, and the two dimensional surfaces of constant curvature, recovering known results. Using our formalism, we also derive the known superseparable potentials for Euclidean 2-space. Some of the original results presented in this thesis were announced in [8, 9, 10].
|
5 |
Analytical study of complex quantum trajectoriesChou, Chia-Chun 03 September 2009 (has links)
Quantum trajectories are investigated within the complex quantum Hamilton-Jacobi formalism. A unified description is presented for complex quantum trajectories for one-dimensional time-dependent and time-independent problems. Complex quantum trajectories are examined for the free Gaussian
wave packet, the coherent state in the harmonic potential, and the the barrier scattering problems. We analyze the variations of the complex-valued kinetic energy, the classical potential, and the quantum potential along the complex
quantum trajectories. For one-dimensional time-independent scattering problems, we demonstrate general properties and similar structures of the complex quantum trajectories and the quantum potentials. In addition, it is shown that a quantum vortex forms around a node in the wave function in complex space, and the quantized circulation integral originates from the discontinuity
in the real part of the complex action. Although the quantum momentum field displays hyperbolic flow around a node, the corresponding Polya vector field
displays circular flow. Moreover, local topologies of the quantum momentum function and the Polya vector field are thoroughly analyzed near a stagnation point or a pole (including circular, hyperbolic, and attractive or repulsive structures). The local structure of the quantum momentum function and the Polya vector field around a stagnation point are related to the first derivative of the quantum momentum function. However, the
magnitude of the asymptotic structures for these two fields near a pole depends only on the order of the node in the wave function. Finally, quantum interference is investigated and it leads to the formation of the topological structure of quantum caves in space-time Argand plots. These caves consist of the vortical
and stagnation tubes originating from the isosurfaces of the amplitude of the wave function and its first derivative. Complex quantum trajectories display
helical wrapping around the stagnation tubes and hyperbolic deflection near the vortical tubes. Moreover, the wrapping time for a specific trajectory is
determined by the divergence and vorticity of the quantum momentum field. The lifetime for interference features is determined by the rotational dynamics of the nodal line in the complex plane. Therefore, these results demonstrate that the complex quantum trajectory method provides a novel perspective for
analysis and interpretation of quantum phenomena. / text
|
6 |
Inverse Parameter Estimation using Hamilton-Jacobi Equations / Inversa parameteruppskattningar genom tillämpning av Hamilton-Jacobi ekvationerHelin, Mikael January 2013 (has links)
Inthis degree project, a solution on a coarse grid is recovered by fitting apartial differential equation to a few known data points. The PDE to consideris the heat equation and the Dupire’s equation with their synthetic data,including synthetic data from the Black-Scholes formula. The approach to fit aPDE is by optimal control to derive discrete approximations to regularized Hamiltoncharacteristic equations to which discrete stepping schemes, and parameters forsmoothness, are examined. By non-parametric numerical implementation thedervied method is tested and then a few suggestions on possible improvementsare given / I detta examensarbete återskapas en lösning på ett glest rutnät genom att anpassa en partiell differentialekvation till några givna datapunkter. De partiella differentialekvationer med deras motsvarande syntetiska data som betraktas är värmeledningsekvationen och Dupires ekvation inklusive syntetiska data från Black-Scholes formel. Tillvägagångssättet att anpassa en PDE är att med hjälp av optimal styrning härleda diskreta approximationer på ett system av regulariserade Hamilton karakteristiska ekvationer till vilka olika diskreta stegmetoder och parametrar för släthet undersöks. Med en icke-parametrisk numerisk implementation prövas den härledda metoden och slutligen föreslås möjliga förbättringar till metoden.
|
7 |
Équation de Hamilton-Jacobi et jeux à champ moyen sur les réseaux / Hamilton-Jacobi equations and Mean field games on networksDao, Manh-Khang 17 October 2018 (has links)
Cette thèse porte sur l'étude d'équation de Hamilton-Jacobi-Bellman associées à des problèmes de contrôle optimal et de jeux à champ moyen avec la particularité qu'on se place sur un réseau (c'est-à-dire, des ensembles constitués d'arêtes connectées par des jonctions) dans les deux problèmes, pour lesquels on autorise différentes dynamiques et différents coûts dans chaque bord d'un réseau. Dans la première partie de cette thèse, on considère un problème de contrôle optimal sur les réseaux dans l'esprit des travaux d'Achdou, Camilli, Cutrì & Tchou (2013) et Imbert, Moneau & Zidani (2013). La principale nouveauté est qu'on rajoute des coûts d'entrée (ou de sortie) aux sommets du réseau conduisant à une éventuelle discontinuité de la fonction valeur. Celle-ci est caractérisée comme l'unique solution de viscosité d'une équation Hamilton-Jacobi pour laquelle une condition de jonction adéquate est établie. L'unicité est une conséquence d'un principe de comparaison pour lequel nous donnons deux preuves différentes, l'une avec des arguments tirés de la théorie du contrôle optimal, inspirée par Achdou, Oudet & Tchou (2015) et l'autre basée sur les équations aux dérivées partielles, d'après Lions & Souganidis (2017). La deuxième partie concerne les jeux à champ moyen stochastiques sur les réseaux. Dans le cas ergodique, ils sont décrits par un système couplant une équation de Hamilton-Jacobi-Bellman et une équation de Fokker- Planck, dont les inconnues sont la densité m de la mesure invariante qui représente la distribution des joueurs, la fonction valeur v qui provient d'un problème de contrôle optimal "moyen" et la constante ergodique ρ. La fonction valeur v est continue et satisfait dans notre problème des conditions de Kirchhoff aux sommets très générales. La fonction m satisfait deux conditions de transmission aux sommets. En particulier, due à la généralité des conditions de Kirchhoff, m est en général discontinue aux sommets. L'existence et l'unicité d'une solution faible sont prouvées pour des Hamiltoniens sous-quadratiques et des hypothèses très générales sur le couplage. Enfin, dans la dernière partie, nous étudions les jeux à champ moyen stochastiques non stationnaires sur les réseaux. Les conditions de transition pour la fonction de valeur v et la densité m sont similaires à celles données dans la deuxième partie. Là aussi, nous prouvons l'existence et l'unicité d'une solution faible pour des Hamiltoniens sous-linéaires et des couplages et dans le cas d'un couplage non-local régularisant et borné inférieurement. La principale difficulté supplémentaire par rapport au cas stationnaire, qui nous impose des hypothèses plus restrictives, est d'établir la régularité des solutions du système posé sur un réseau. Notre approche consiste à étudier la solution de l'équation de Hamilton-Jacobi dérivée pour gagner de la régularité sur la solution de l'équation initiale. / The dissertation focuses on the study of Hamilton-Jacobi-Bellman equations associated with optimal control problems and mean field games problems in the case when the state space is a network. Different dynamics and running costs are allowed in each edge of the network. In the first part of this thesis, we consider an optimal control on networks in the spirit of the works of Achdou, Camilli, Cutrì & Tchou (2013) and Imbert, Monneau & Zidani (2013). The main new feature is that there are entry (or exit) costs at the edges of the network leading to a possible discontinuous value function. The value function is characterized as the unique viscosity solution of a Hamilton-Jacobi equation for which an adequate junction condition is established. The uniqueness is a consequence of a comparison principle for which we give two different proofs. One uses some arguments from the theory of optimal control and is inspired by Achdou, Oudet & Tchou (2015). The other one is based on partial differential equations techniques and is inspired by a recent work of Lions & Souganidis (2017). The second part is about stochastic mean field games for which the state space is a network. In the ergodic case, they are described by a system coupling a Hamilton- Jacobi-Bellman equation and a Fokker-Planck equation, whose unknowns are the density m of the invariant measure which represents the distribution of the players, the value function v which comes from an "average" optimal control problem and the ergodic constant ρ. The function v is continuous and satisfies general Kirchhoff conditions at the vertices. The density m satisfies dual transmission conditions. In particular, due to the generality of Kirchhoff’s conditions, m is in general discontinuous at the vertices. Existence and uniqueness are proven for subquadratic Hamiltonian and very general assumptions about the coupling term. Finally, in the last part, we study non-stationary stochastic mean field games on networks. The transition conditions for value function v and the density m are similar to the ones given in second part. Here again, we prove the existence and uniqueness of a weak solution for sublinear Hamiltonian and bounded non-local regularizing coupling term. The main additional difficulty compared to the stationary case, which imposes us more restrictive hypotheses, is to establish the regularity of the solutions of the system placed on a network. Our approach is to study the solution of the derived Hamilton-Jacobi equation to gain regularity over the initial equation.
|
8 |
Équations de Hamilton-Jacobi sur des réseaux ou des structures hétérogènes / Hamilton-Jacobi equations on networks or heterogeneous structuresOudet, Salomé 03 November 2015 (has links)
Cette thèse porte sur l'étude de problèmes de contrôle optimal sur des réseaux (c'est-à-dire des ensembles constitués de sous-régions reliées entre elles par des jonctions), pour lesquels on autorise différentes dynamiques et différents coûts instantanés dans chaque sous-région du réseau. Comme dans les cas plus classiques, on aimerait pouvoir caractériser la fonction valeur d'un tel problème de contrôle par le biais d'une équation de Hamilton-Jacobi-Bellman. Cependant, les singularités géométriques du domaine, ainsi que les discontinuités des données ne nous permettent pas d'appliquer la théorie classique des solutions de viscosité. Dans la première partie de cette thèse nous prouvons que les fonctions valeurs de problèmes de contrôle optimal définis sur des réseaux 1-dimensionnel sont caractérisées par de telles équations. Dans la seconde partie les résultats précédents sont étendus au cas de problèmes de contrôle définis sur une jonction 2-dimensionnelle. Enfin, dans une dernière partie, nous utilisons les résultats obtenus précédemment pour traiter un problème de perturbation singulière impliquant des problèmes de contrôle optimal dans le plan pour lesquels les dynamiques et les coûts instantanés peuvent être discontinus à travers une frontière oscillante. / This thesis focuses on the study of optimal control problems defined on networks (i.e. sets consisting of sub-regions connected together through junctions), where different dynamics and different running costs are allowed in each sub-region of the network. As in classical cases, we would like to characterize the value function of such an optimal control problem through an Hamilton-Jacobi-Bellman equation. However, the geometrical singularities of the domain and the data discontinuities do not allow us to apply the classical theory of viscosity solutions. In the first part of this thesis, we prove this kind of characterization for the value functions of optimal control problems defined on 1-dimensional networks. In the second part, the previous results are extended to the case of control problems defined on a 2-dimensional junction. Finally, in the last part, we use the results obtained previously to treat a singular perturbation problem involving optimal control problems in the plane for which the dynamics and running costs can be discontinuous through an oscillating border.
|
9 |
Orthogonal Separation of The Hamilton-Jacobi Equation on Spaces of Constant CurvatureRajaratnam, Krishan 21 April 2014 (has links)
What is in common between the Kepler problem, a Hydrogen atom and a rotating black-
hole? These systems are described by different physical theories, but much information
about them can be obtained by separating an appropriate Hamilton-Jacobi equation. The
separation of variables of the Hamilton-Jacobi equation is an old but still powerful tool
for obtaining exact solutions.
The goal of this thesis is to present the theory and application of a certain type of
conformal Killing tensor (hereafter called concircular tensor) to the separation of variables
problem. The application is to spaces of constant curvature, with special attention to spaces
with Euclidean and Lorentzian signatures. The theory includes the general applicability of
concircular tensors to the separation of variables problem and the application of warped
products to studying Killing tensors in general and separable coordinates in particular.
Our first main result shows how to use these tensors to construct a special class of
separable coordinates (hereafter called Kalnins-Eisenhart-Miller (KEM) coordinates) on
a given space. Conversely, the second result generalizes the Kalnins-Miller classification
to show that any orthogonal separable coordinates in a space of constant curvature are
KEM coordinates. A closely related recursive algorithm is defined which allows one to
intrinsically (coordinate independently) search for KEM coordinates which separate a
given (natural) Hamilton-Jacobi equation. This algorithm is exhaustive in spaces of
constant curvature. Finally, sufficient details are worked out, so that one can apply these
procedures in spaces of constant curvature using only (linear) algebraic operations. As an
example, we apply the theory to study the separability of the Calogero-Moser system.
|
10 |
Équations cinétiques stochastiques et déterministes dans le contexte des mathématiques appliquées à la biologie / Stochastic and deterministic kinetic equations in the context of mathematics applied to biologyCaillerie, Nils 05 July 2017 (has links)
Cette thèse étudie des modèles mathématiques inspirés par la biologie. Plus précisément, nous nous concentrons sur des équations aux dérivées partielles cinétiques. Les champs d'application des équations cinétiques sont nombreux mais nous nous concentrons ici sur des phénomènes de propagation d'espèces invasives, notamment la bactérie Escherichia coli et le crapaud buffle Rhinella marina.La première partie de la thèse ne présente pas de résultats mathématiques. Nous construisons plusieurs modélisations pour la dispersion à grande échelle du crapaud buffle en Australie. Nous confrontons ces mêmes modèles à des données statistiques multiples (taux de fécondité, taux de survie, comportements dispersifs) pour mesurer leur pertinence. Ces modèles font intervenir des processus à sauts de vitesses et des équations cinétiques.Dans la seconde partie, nous étudions des phénomènes de propagation dans des modèles cinétiques plus simples. Nous illustrons plusieurs méthodes pour établir mathématiquement des formules de vitesse de propagation dans ces modèles. Cette partie nous amène à établir des résultats de convergence d'équations cinétiques vers des équations de Hamilton-Jacobi par la méthode de la fonction test perturbée. Nous montrons également comment le formalisme Hamilton-Jacobi permet de trouver des résultats de propagation et enfin, nous construisons des solutions en ondes progressives pour un modèle de transport-réaction. Dans la dernière partie, nous établissons un résultat de limite de diffusion stochastique pour une équation cinétique aléatoire. Pour ce faire, nous adaptons la méthode de la fonction test perturbée sur la formulation d'une EDP stochastique en terme de générateurs infinitésimaux.La thèse comporte également une annexe qui expose les données trajectorielles des crapauds dont nous nous servons en première partie." / In this thesis, we study some biology inspired mathematical models. More precisely, we focus on kinetic partial differential equations. The fields of application of such equations are numerous but we focus here on propagation phenomena for invasive species, the Escherichia coli bacterium and the cane toad Rhinella marina, for example. The first part of this this does not establish any mathematical result. We build several models for the dispersion of the cane toad in Australia. We confront those very models to multiple statistical data (birth rate, survival rate, dispersal behaviors) to test their validity. Those models are based on velocity-jump processes and kinetic equations. In the second part, we study propagation phenomena on simpler kinetic models. We illustrate several methods to mathematically establish propagation speed in this models. This part leads us to establish convergence results of kinetic equations to Hamilton-Jacobi equations by the perturbed test function method. We also show how to use the Hamilton-Jacobi framework to establish spreading results et finally, we build travelling wave solutions for reaction-transport model. In the last part, we establish a stochastic diffusion limit result for a kinetic equation with a random term. To do so, we adapt the perturbed test function method on the formulation of a stochastic PDE in term of infinitesimal generators. The thesis also contains an annex which presents the data on toads’ trajectories used in the first part."
|
Page generated in 0.0344 seconds