• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 12
  • 1
  • Tagged with
  • 24
  • 24
  • 13
  • 13
  • 11
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse mathématique et numérique de<br />quelques modèles hydrodynamiques et cinétiques de la physique des plasmas

Buet, Christophe 23 November 2005 (has links) (PDF)
Mes recherches au Commissariat à l'Énergie Atomique concernent principalement la modélisa- <br />tion mathématique et la simulation numérique pour la physique des plasmas. Ce mémoire présente <br />mes contributions dans ce domaine.
2

Obtention de modèles de diffusion à partir d'équations cinétiques. Modélisation, étude mathématique et simulation

Bourgade, Jean-Pierre 10 December 2004 (has links) (PDF)
Cette thèse porte sur la modélisation du transport électronique dans les semi-conducteurs. Des modèles de diffusion sont couramment utilisés (modèles de type Dérive Diffusion), mais ils s'avèrent imprécis pour de petites échelles (composants nanométriques) et des systèmes hors équilibre (régimes transitoires). Les modèles cinétiques, très précis, sont généralement trop coûteux en temps de calcul pour permettre une utilisation dans des contextes physiques réalistes. Les modèles Spherical Harmonics Expansion (SHE) représentent un intermédiaire intéressant entre ces deux types de modèles. Les modèles SHE sont des modèles de diffusion dans l'espace position-énergie qui sont théoriquement adaptés à la modélisation de systèmes de particules proches de l'équilibre (mais pas forcément d'un équilibre Maxwellien, contrairement aux modèles de Dérive Diffusion), la thermalisation étant le fait de collisions de type élastique. Dans cette thèse, nous avons proposé des modèles de type SHE couplé qui permettent de modéliser des particules interagissant avec le milieu environnant de façon inélastique. Un modèle SHE couplé est introduit pour décrire les interactions entre électrons et phonons dans les semi-conducteurs. Un autre modèle de type SHE couplé est proposé pour modéliser des situations où la diffusion est engendrée par des collisions entre les particules considérées (électrons par exemple) et les parois du matériau dans lequel elles évoluent. Une étude numérique montre que les modèles de type SHE et SHE couplé donnent une représentation fidèle de la réalité (montrant de faibles différences avec des modèles cinétiques), même lorsque les collisions considérées sont fortement inélastiques. Enfin, nous proposons une hiérarchie de modèles SHE quantiques pour la description de systèmes de très petite échelle, lorsque le transport électronique aussi bien que les interactions avec le milieu sont régies par la mécanique quantique. Ces modèles dissipent une entropie quantique.
3

Structure géométrique des parois en micromagnétisme et des ondes de choc de solutions de lois de conservation scalaires

Lecumberry, Myriam 09 December 2003 (has links) (PDF)
Le micromagnétisme est l'étude de la magnétisation spontanée dans les matériaux ferromagnétiques. Cette magnétisation, de norme constante, est soumise à une énergie libre. Nous étudions les configurations limites admissibles de la magnétisation dans certains régimes asymptotiques. Les premiers résultats présentés concernent la structure géométrique des parois des configurations limites d'un modèle micromagnétique en deux dimensions. La similarité entre le problème micromagnétique et les lois de conservation scalaires nous permet d'obtenir, par la meme méthode, un résultat sur la structure des ondes de choc de certaines solutions d'une loi de conservation scalaire en une dimension d'espace. Enfin, nous donnons une formulation cinétique du problème mathématique lié à un modèle micromagnétique en trois dimensions et nous terminons par un résultat de régularisation pour les moyennes en vitesse des solutions d'une équation cinétique linéaire.
4

Modèles cinétiques. Applications en volcanologie et neurosciences.

Mancini, Simona 08 November 2012 (has links) (PDF)
Les travaux présentés concernent l'étude analytique et numérique de différents modèles cinétiques appliqués à plusieurs domaines, plus particulièrement : aux neurosciences computationelles et à la volcanologie. Les points communs à ces sujets de recherche sont : - l'utilisation des équations aux dérivées partielles pour l'écriture des modèles mathématiques en partant d'une description microscopique du phénomène, - leur résolution numérique par des schémas déterministes, - une importante interaction avec les collègues bio et géo-physiciens. Les travaux effectuées en collaboration avec les collègues de géophysique (ISTO, Orléans), proposent une description statistique de l'évolution d'une population de bulles de gaz dans un fluide très visqueux. Cette modélisation souligne l'importance de la prise en compte de la coalescence de bulles et ouvre la voie à plusieurs axes de recherche en mathématique et en volcanologie. Les résultats obtenus en neurosciences computationelles sont basés sur des travaux récents concernant les systèmes d'équations stochastiques lents-rapides. Ils permettent de réduire un problème bidimensionnel, nécessitant des moyens de calcul importants, à un modèle unidimensionnel dont la solution d'équilibre est explicite.
5

Etude mathématique et numérique de quelques modèles cinétiques et de leurs asymptotiques : limites de diffusion et de diffusion anormale / Mathematical and numerical study of some kinetic models and of their asymptotics : diffusion and anomalous diffusion limits

Hivert, Hélène 05 October 2016 (has links)
L'objet de cette thèse est la construction de schémas numériques pour les équations cinétiques dans différents régimes de diffusion anormale. Comme le modèle devient raide en s'approchant du modèle asymptotique, les méthodes numériques standard deviennent coûteuses dans ce régime. Les schémas Asymptotic Preserving ont été introduits pour pallier à cette difficulté. Ils sont en effet stables le long de la transition du régime mésoscopique au régime microscopique. Dans le premier chapitre, nous considérons le cas d'une distribution d'équilibre qui est une fonction à queue lourde et dont le moment d'ordre 2 est infini. Le poids important des grandes vitesses de l'équilibre fait tomber la limite de diffusion usuelle en défaut, et on montre que le modèle asymptotique est une équation de diffusion fractionnaire. En nous basant sur une analyse asymptotique formelle de la convergence vers le modèle limite, nous construisons trois schémas AP pour le problème. La discrétisation en vitesse est discutée afin de prendre en compte correctement les grandes vitesses, et nous montrons que le troisième schéma est en outre uniformément précis au cours de la transition vers le régime microscopique. Dans le chapitre 2, nous étendons ces résultats au cas d'une fréquence de collision dégénérée en 0 qui mène aussi à une équation de diffusion fractionnaire. Nous adaptons ensuite ces méthodes numériques au cas d'une limite de diffusion normale avec scaling en temps anormal dans l'équation cinétique dans le chapitre 3. Dans ce cadre, la lenteur de la convergence vers le modèle asymptotique rend nécessaire une adaptation de l'approche AP des chapitres précédents. Enfin, le chapitre 4 présente un schéma AP pour l'équation cinétique dans le cas heavy-tail du chapitre 1 lorsque l'opérateur de collision est non-local. / In this thesis, we construct numerical schemes for kinetic equations in some anomalous diffusion regimes. As the model becomes stiff when reaching the asymptotic model, the standard numerical methods become costly in this regime. Asymptotic Preserving (AP) schemes have been designed to overcome this difficulty. Indeed, they are uniformly stable along the transition from the mesoscopic regime to the microscopic one. In the first chapter, we study the case of a heavy-tailed equilibrium distribution, with infinite second order moment. The importance of the high velocities in the equilibrium makes the classical diffusion limit fail, and one can prove that the asymptotic model is a fractional diffusion equation. We construct three AP schemes for this problem, based on a formal asymptotic analysis of the convergence towards the limit model. The discretization of the velocities is then discussed to take into account the high velocities. Moreover, we prove that the third scheme enjoys the stronger property of being uniformly accurate along the convergence towards the microscopic regime. In chapter 2, we extend these results to the case of a degenerated collision frequency, also leading to a fractional diffusion limit. In chapter 3, these methods are then adapted to the case of a classical diffusion limit with anomalous time scale in the kinetic equation. In this case, an adaptation of the AP approach of the previous chapter is needed, because of the slow convergence rate of the kinetic equation towards the limit model. Eventually, a AP scheme for kinetic equation with heavy-tailed equilibria and non local collision operator is presented in chapter 4.
6

Analyse mathématique et numérique des modèles Pn pour la simulation de problèmes de transport de photons / Mathematical and numerical analysis of Pn models for photons transport problems

Valentin, Xavier 17 December 2015 (has links)
La résolution numérique directe des problèmes de transport de photons en interaction avec un milieu matériel est très coûteuse en mémoire et temps CPU. Pour pallier ce problème, une méthode consiste à construire des modèles réduits dont la résolution est moins coûteuse. La littérature abonde de ce genre de modèles : modèles probabilistes (Monte-Carlo), modèles aux moments (M₁, PN), modèles aux ordonnées discrètes (SN), modèles de diffusion... Dans cette thèse, nous nous intéressons aux modèles PN dans lesquels l'opérateur de transport est approché par projections sur une base tronquée d'harmoniques sphériques. Ces modèles ont l'avantage d'être arbitrairement précis sur la dimension angulaire et ne présentent pas les défauts connus des autres méthodes (bruit stochastique, "effets de raies") pouvant briser les éventuelles symétries du problème. Ce dernier point est capital pour la simulation d'expériences de fusion par confinement inertiel (FCI) où la symétrie sphérique joue un rôle important dans la précision des résultats. Nous étudions donc dans cette thèse la structure mathématique des modèles PN ainsi que leur discrétisation dans le cas d'une géométrie 1D sphérique.Nous commençons par le cas du transport linéaire dans le vide. Même dans ce cas simple, les équations du modèle PN contiennent des termes sources d'origine géométrique dont la discrétisation s'avère délicate. Jusqu'à présent, les différents schémas utilisés étaient insatisfaisants pour les raisons suivantes : (1) mauvais comportement au voisinage de r = 0 (phénomène de "flux-dip"), (2) non préservation des équilibres stationnaires, (3) pas de preuve formelle de stabilité. À la lumière de récents travaux, nous proposons une nouvelle discrétisation qui capture exactement les états d'équilibres. Nous démontrons en particulier la stabilité en norme L² du schéma. Nous étendons par la suite ce schéma au cas du transport de photons dans un milieu matériel figé et nous nous intéressons au comportement du schéma en limite diffusion (propriété "asymptotic-preserving").Dans un second temps, nous nous intéressons au couplage entre rayonnement et hydrodynamique. Devant l'absence de consensus sur les modèles "transport" d'hydrodynamique radiative issus de la littérature, nous établissons une étude comparative de ceux-ci basée sur leurs propriétés mathématiques. Nous nous intéressons particulièrement aux propriétés suivantes : (1) conservation de l'énergie et de l'impulsion, (2) précision des effets comobiles, (3) existence d'une entropie mathématiques compatible et (4) restitution de la limite diffusion. Notre étude se réduit aux modèles dits "mixed-frame" et une attention particulière est toujours portée sur l'approximation "PN" de l'opérateur de transport. Nous identifions des défauts (conservation ou entropie) sur des modèles existants et proposons une correction entropique conduisant à un modèle PN satisfaisant toutes les propriétés mathématiques listées ci-dessus. / Computational costs for direct numerical simulations of photon transport problemsare very high in terms of CPU time and memory. One way to tackle this issue is todevelop reduced models that a cheaper to solve numerically. There exists number of these models : moments models, discrete ordinates models (SN), diffusion-like models... In this thesis, we focus on PN models in which the transport operator is approached by mean of a truncated development on the spherical harmonics basis. These models are arbitrary accurate in the angular dimension and are rotationnaly invariants (in multiple space dimensions). The latter point is fundamental when one wants to simulate inertial confinment fusion (ICF) experiments where the spherical symmetry plays an important part in the accuracy of the numerical solutions. We study the mathematical structure of the PN models and construct a new numerical method in the special case of a one dimensionnal space dimension with spherical symmetry photon transport problems. We first focus on a linear transport problem in the vacuum. Even in this simple case, it appears in the PN equations geometrical source terms that are stiff in the neighborhood of r = 0 and thus hard to discretise. Existing numerical methods are not satisfactory for multiple reasons : (1) unaccuracy in the neighborhood of r = 0 ("flux-dip"), (2) do not capture steady states (well-balanced scheme), (3) no stability proof. Following recent works, we develop a new well-balanced scheme for which we show the L² stability. We then extend the scheme for photon transport problems within a no moving media, the linear Boltzmann equation, and interest ourselves on its behavior in the diffusion limit (asymptotic-preserving property). In a second part, we consider radiation hydrodynamics problems. Since modelisation of these problems is still under discussion in the litterature, we compare a set of existing models by mean of mathematical analysis and establish a hierarchy. For each model, we focus on the following mathematical properties : (1) energy and impulsion conservation, (2) accuracy of the comobile effects, (3) existence of a mathematical entropy and (4) behavior in the diffusion limit. Our study reduces to « laboratory frame » models and we are still interested in the PN approximation of the transport operator. We identify defects in entropy structure of existing models and propose an entroy correction which leads to PN-based radiation hydrodynamics models which satisfy all the properties listed above.
7

Controllability of of some kinetic equations, of parabolic degenerated equations and of the Schrödinger equation via domain transformation. / Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et Schrödinger

Moyano Garcia, Iván 29 September 2016 (has links)
Ce mémoire présente les travaux réalisés au cours de ma thèse dans le but d'étudier la contrôlabilité de quelques équations aux dérivées partielles. La première partie de cette thèse est consacrée à l'étude de la contrôlabilité de quelques équations cinétiques en différents régimes. Dans un régime collisionnel, nous étudions la contrôlabilité de l'équation de Kolmogorov, un modèle de type Fokker-Planck cinétique, posée dans l'espace de phases $R^d times R^d$. Nous obtenons la contrôlabilité à zéro de cette équation grâce à l'utilisation d'une inégalité spectrale associée à l'opérateur Laplacien dans tout l'espace. Dans un régime non-collisionnel, nous étudions la contrôlabilité de deux systèmes de couplage fluide-cinétique, les systèmes de Vlasov-Stokes et de Vlasov-Navier-Stokes, comportant des non-linéarités dues au terme de couplage. Dans ces cas, l'approche repose sur la méthode du retour.Dans la deuxième partie nous étudions la contrôlabilité d'une famille d'équations paraboliques dégénérées 1-D par la méthode de platitude, qui permet la constructions de contrôles explicites. La troisième partie porte sur le problème de la contrôlabilité de l'équation de Schrödinger par la forme du domaine, c'est-à-dire, en utilisant le domaine comme variable de contrôle. Nous obtenons un résultat de ce type dans le cas du disque unité bidimensionnel. Nos méthodes sont basées sur un résultat de contrôle exact local autour d'une certaine trajectoire, obtenu grâce au théorème d'inversion locale. / This memoir presents the results obtained during my PhD, whose goal is the study of the controllability of some Partial Differential Equations.The first part of this thesis is concerned with the study of the controllability of some kinetic equations undergoing different regimes. Under a collisional regime, we study the controllability of the Kolmogorov equation, a particular case of kinetic Fokker-Planck equation, in the phase space $R^d times R^d$. We obtain the null-controllability of this equation thanks to the use of a spectral inequality associated to the Laplace operator in the whole space. Under a non-collisional regime, we study the controllability of two fluid-kinetic models, the Vlasov-Stokes system and the Vlasov-Navier-Stokes system, which exhibe nonlinearities due to the coupling terms. In those cases, the strategy relies on the Return method.In the second part, we study the controllability of a family of 1-D degenerate parabolic equations by the flatness method, which allows the construction of explicit controls.The third part is focused on the problem of the controllability of the Schrödinger equation via domain deformations, i.e., using the domain as a control. We obtain a result of this kind in the case of the two-dimensional unit disk, for radial data. Our methods are based on a local exact controllability result around a certain trajectory, obtained thanks to the Inverse Mapping theorem.
8

Numerical simulation of rarefied gas flows based on the kinetic approach / Simulation numérique de l'écoulement de gaz raréfiés sur la base des équations cinétiques modèles

Polikarpov, Alexey 27 October 2011 (has links)
Ce travail de thèse porte sur le développement de la méthode des vitesses discrètes pour la résolution numérique de équations cinétiques modèles, BGK, S modèle et ES modèle, qui représentent les différentes approximations de l’équation de Boltzmann. / This work is devoted to the development of the numerical resolution of the kinetic model equations such as BGK, S-model, ES-model by the discrete velocity method. The different approximations of the Boltzmann equation are presented
9

Vortex, entropies et énergies de ligne en micromagnétisme / Vortices, entropies and line-energies in micromagnetism

Bochard, Pierre 24 June 2015 (has links)
Cette thèse traite de questions mathématiques posées par des problèmes issus du micromagnétisme ; un thème central en est les champs de vecteur de rotationnel nul et de norme 1, qu'on voit naturellement apparaître comme configurations minimisant des énergies micromagnétiques.Le premier chapitre est motivé par la question suivante : peut-on, en dimension plus grande que deux, caractériser les champs de vecteur de rotationnel nul et de norme 1 par une formulation cinétique ?Une telle formulation a d'abord été introduite en dimension 2 dans l'article \cite{Jabin_Otto_Perthame_Line_energy_2002} de Jabin, Otto et Perthame où elle apparaît naturellement dans le cadre de la minimisation d'une énergie de type Ginzburg-Landau. Ignat et De Lellis ont ensuite montré dans \cite{DeLellis_Ignat_Regularizing_2014} qu'une telle formulation cinétique caractérise les champs de rotationnel nul et de norme 1 possédant une certaine régularité en dimension 2. Le premier chapitre de cette thèse est consacré à l'étude d'une formulation cinétique similaire en dimension quelconque ; le résultat principal en est qu'en dimension strictement plus grande que 2, cette fomulation cinétique ne caractérise non plus tous les champs de rotationnel nul et de norme 1, mais seulement les champs constants ou les vortex.La caractérsation cinétique des champs de vecteur de rotationnel nul et de norme 1 en dimension 2,prouvée par De Lellis et Ignat et que nous venons de mentionner reposait sur la notion d'entropie.Ayant obtenu une formulation cinétique en dimension quelconque, il était naturel de vouloir l'exploiter un tentant d'étendre également la notion d'entropie aux dimensions supérieures à 2. C'est ce à quoi est consacré le deuxième chapitre de cette thèse ; nous y définissons en particulier une notion d'entropie en dimension quelconque. Le point central en est la caractérisation de ces entropies par un système d'\équations aux dérivées partielles, et leur description complète en dimension 3, ainsi que la preuve pour ces entropies de propriétés tout à fait semblables à celles des entropies deux dimensionnelles.Le troisième chapitre de cette thèse, qui expose les résultats d'un travail en collaboration avec Antonin Monteil, s'intéresse à la minimisation d'\'energies de type Aviles-Giga de la forme $\mathcal_f(m)=\int_f(|m^+-m^-|)$ o\`u $m$ est un champ de rotationnel nul et de norme 1 et où $J(m)$ désigne les lignes de saut de $m$. Deux questions classiques se posent pour ce type d'énergie : la solution de viscosité de l'équation eikonale est-elle un minimiseur et l'énergie est-elle semi-continue inférieurement pour une certaine topologie. Le résutat principal de cette partie est un construction, qui nous permet en particulier de répondre par la négative à ces deux questions dans les cas où $f(t)= t^p$ avec $p \in ]0,1[$ en donnant une condition nécessaire sur $f$ pour que $\mathcal_f$ soit semi-continue inférieurement.Enfin, le dernier chapitre de cette thèse est consacré à l'étude d'une variante de l'énergie de Ginzburg-Landau introduite par Béthuel, Brezis et Helein où on a remplacé la condition de bord par une pénalisation dépendant d'un paramètre. Nous y décrivons le comportement asymptotique de l'énergie minimale qui, suivant la valeur de ce paramètre, soit se comporte comme l'énergie de Ginzburg-Landau classique en privilégiant une configuration vortex, soit privilégie au contraire une configuration singulière suivant une ligne. / This thesis is motivated by mathematical questions arising from micromagnetism. One would say that a central topic of this thesis is curl-free vector fields taking value into the sphere. Such fields naturally arise as minimizers of micromagnetic-type energies. The first part of this thesis is motivated by the following question : can we find a kinetic formulation caracterizing curl-free vector fields taking value into the sphere in dimension greater than 2 ? Such a formulation has been found in two dimension by Jabin, Otto and Perthame in \cite. De Lellis and Ignat used this formulation in \cite{DeLellis_Ignat_Regularizing_2014} to caracterize curl-free vector fields taking value into the sphere with a given regularity. The main result of this part is the generalization of their kinetic formulation in any dimension and the proof that if $d>2$, this formulation caracterizes only constant vector fields and vorteces, i. e. vector fields of the form $\pm \frac$. The second part of this thesis is devoted to a generalization of the notion of \textit, which plays a key role in the article of De Lellis and Ignat we talked about above. We give a definition of entropy in any dimension, and prove properties quite similar to those enjoyed by the classical two-dimensional entropy. The third part of this thesis, which is the result of a joint work with Antonin Monteil, is about the study of an Aviles-Giga type energy. The main point of this part is a necessary condition for such an energy to be lower semi continuous. We give in particular an example of energy of this type for which the viscosity solution of the eikonal equation is \textit a minimizer. The last part, finally is devoted to the study of a Ginzburg-Landau type energy where we replace the boundary condition of the classical Ginzburg-Landau energy introduced by Béthuel, Brezis and Helein by a penalization within the energy at the critical scaling depending on a parameter. The core result of this part is the description of the asymptotic of the minimal energy, which, depending on the parameter, favorizes vortices-like configuration like in the classical Ginzburg-Landau case, or configurations singular along a line.
10

Exploration numérique de comportements asymptotiques pour des équations de transport-diffusion

Lafitte-Godillon, Pauline 10 December 2010 (has links) (PDF)
Mon travail de recherche a couvert ces dernières années un spectre assez large de modélisation, analyse numérique et simulation pour des problèmes physiques et biologiques, de la mécanique à l'échelle moléculaire ou particulaire, niveau dit " microscopique ", à la diffusion non-linéaire, niveau " macroscopique ", en passant par des équations cinétiques décrivant la distribution en vitesse de particules, niveau " mésoscopique ". Le point commun de ces travaux est l'étude de comportements asymptotiques et la recherche d'explications de phénomènes observables macroscopiques par des descriptions micro ou mésoscopiques à l'aide d'outils numériques. Les applications auxquelles on s'intéresse ici sont, pour la partie physique, liées à la thermodynamique couplée ou non avec du transfert radiatif ou une dynamique particulaire raréfiée et, pour la partie biologie-chimie, à des problèmes de propagation d'information par des mécanismes de transport ou de diffusion, ainsi qu'à la recherche de formation de motifs et à l'étude d'extinction de populations. Les équations aux dérivées partielles étudiées proviennent de modèles déterministes ou probabilistes et se classent dans les catégories de transport et de diffusion évolutifs. L'apparition, lors de l'adimensionnement des problèmes, de petits paramètres qui augmentent l'influence de certains des phénomènes caractéristiques dans la solution peut entraîner des difficultés importantes lors du traitement numérique, ce qui impose le recours à des solutions nouvelles permettant de recouvrer au minimum le comportement macroscopique prédit par les observations et par l'analyse mathématique.

Page generated in 0.0771 seconds