• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 442
  • 171
  • 53
  • 40
  • 26
  • 19
  • 14
  • 13
  • 12
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 960
  • 960
  • 199
  • 176
  • 160
  • 157
  • 139
  • 137
  • 123
  • 114
  • 95
  • 92
  • 78
  • 77
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Second-order least squares estimation in dynamic regression models

AbdelAziz Salamh, Mustafa 16 April 2014 (has links)
In this dissertation we proposed two generalizations of the Second-Order Least Squares (SLS) approach in two popular dynamic econometrics models. The first one is the regression model with time varying nonlinear mean function and autoregressive conditionally heteroskedastic (ARCH) disturbances. The second one is a linear dynamic panel data model. We used a semiparametric framework in both models where the SLS approach is based only on the first two conditional moments of response variable given the explanatory variables. There is no need to specify the distribution of the error components in both models. For the ARCH model under the assumption of strong-mixing process with finite moments of some order, we established the strong consistency and asymptotic normality of the SLS estimator. It is shown that the optimal SLS estimator, which makes use of the additional information inherent in the conditional skewness and kurtosis of the process, is superior to the commonly used quasi-MLE, and the efficiency gain is significant when the underlying distribution is asymmetric. Moreover, our large scale simulation studies showed that the optimal SLSE behaves better than the corresponding estimating function estimator in finite sample situation. The practical usefulness of the optimal SLSE was tested by an empirical example on the U.K. Inflation. For the linear dynamic panel data model, we showed that the SLS estimator is consistent and asymptotically normal for large N and finite T under fairly general regularity conditions. Moreover, we showed that the optimal SLS estimator reaches a semiparametric efficiency bound. A specification test was developed for the first time to be used whenever the SLS is applied to real data. Our Monte Carlo simulations showed that the optimal SLS estimator performs satisfactorily in finite sample situations compared to the first-differenced GMM and the random effects pseudo ML estimators. The results apply under stationary/nonstationary process and wih/out exogenous regressors. The performance of the optimal SLS is robust under near-unit root case. Finally, the practical usefulness of the optimal SLSE was examined by an empirical study on the U.S. airfares.
232

Measurement of horses gaits using geo-sensors

Qin, Xuefei January 2014 (has links)
The aim of this thesis is to determine the horse’s gait types using the acceleration values measured from the horse. A measurement was taken in Gävletravet, a total of five Nanotrak sensors were used, four on the different parts of the horse, and one on the hand of the horse’s driver, a car was driven parallel to the horse and the motions of the horse was recorded by a camera in order to synchronize with the data measured by the sensors, a total of four videos were recorded. The software to process the data was Matlab R2010b, and the methods to analyze them were Fast Fourier Transform (FFT), Short Time Fourier Transform (STFT), and Least Squares (LS). Different window functions were tried when applying the STFT, and the Hanning window was the best to smooth the curves, different window sizes (or data length) were also tried, the data length of 512 was found to be the most proper value. The methods for classification of horse’s gaits included amplitude, ratio, and LS. The method of amplitude worked well for the first three videos except for the last one, and performed better than the other two. The method of ratio was more reliable, but the results were not satisfactory. The method of LS gave bad results, so it was not trustworthy. More measurements and more analysis needed to be done in the future to find a proper way to automatic determine the horse’s gaits, and the use of modern technology will be very popular in other fields like animal science.
233

Customer perceived value : reconceptualisation, investigation and measurement

Bruce, Helen Louise 09 1900 (has links)
The concept of customer perceived value occupies a prominent position within the strategic agenda of organisations, as firms seek to maximise the value perceived by their customers as arising from their consumption, and to equal or exceed that perceived in relation to competitor propositions. Customer value management is similarly central to the marketing discipline. However, the nature of customer value remains ambiguous and its measurement is typically flawed, due to the poor conceptual foundation upon which previous research endeavours are built. This investigation seeks to address the current poverty of insight regarding the nature and measurement of customer value. The development of a revised conceptual framework synthesises the strengths of previous value conceptualisations while addressing many of their limitations. A multi-dimensional depiction of value arising from customer experience is presented, in which value is conceptualised as arising at both first-order dimension and overall, second-order levels of abstraction. The subsequent operationalisation of this conceptual framework within a two-phase investigation combines qualitative and quantitative methodologies in a study of customer value arising from subscription TV (STV) consumption. Sixty semi-structured interviews with 103 existing STV customers give rise to a multi-dimensional model of value, in which dimensions are categorised as restorative, actualising and hedonic in type, and as arising via individual, reflected or shared modes of perception. The quantitative investigation entails two periods of data collection via questionnaires developed from the qualitative findings, and the gathering of 861 responses, also from existing STV customers. A series of scales with which to measure value dimensions is developed and an index enabling overall perceived value measurement is produced. Contributions to theory of customer value arise in the form of enhanced insights regarding its nature. At the first-order dimension level, the derived dimensions are of specific relevance to the STV industry. However, the empirically derived framework of dimension types and modes of perception has potential applicability in multiple contexts. At the more abstract, second-order level, the findings highlight that value perceptions comprise only a subset of potential dimensions. Evidence is thus presented of the need to consider value at both dimension and overall levels of perception. Contributions to knowledge regarding customer value measurement also arise, as the study produces reliable and valid scales and an index. This latter tool is novel in its formative measurement of value as a second order construct, comprising numerous first-order dimensions of value, rather than quality as incorporated in previously derived measures. This investigation also results in a contribution to theory regarding customer experience through the identification of a series of holistic, discrete, direct and indirect value-generating interactions. Contributions to practice within the STV industry arise as the findings present a solution to the immediate need for enhanced value insight. Contributions to alternative industries are methodological, as this study presents a detailed process through which robust value insight can be derived. Specific methodological recommendations arise in respect of the need for empirically grounded research, an experiential focus and a twostage quantitative methodology.
234

Convex Optimization Methods for System Identification

Dautbegovic, Dino January 2014 (has links)
The extensive use of a least-squares problem formulation in many fields is partly motivated by the existence of an analytic solution formula which makes the theory comprehensible and readily applicable, but also easily embedded in computer-aided design or analysis tools. While the mathematics behind convex optimization has been studied for about a century, several recent researches have stimulated a new interest in the topic. Convex optimization, being a special class of mathematical optimization problems, can be considered as generalization of both least-squares and linear programming. As in the case of a linear programming problem there is in general no simple analytical formula that can be used to find the solution of a convex optimization problem. There exists however efficient methods or software implementations for solving a large class of convex problems. The challenge and the state of the art in using convex optimization comes from the difficulty in recognizing and formulating the problem. The main goal of this thesis is to investigate the potential advantages and benefits of convex optimization techniques in the field of system identification. The primary work focuses on parametric discrete-time system identification models in which we assume or choose a specific model structure and try to estimate the model parameters for best fit using experimental input-output (IO) data. By developing a working knowledge of convex optimization and treating the system identification problem as a convex optimization problem will allow us to reduce the uncertainties in the parameter estimation. This is achieved by reecting prior knowledge about the system in terms of constraint functions in the least-squares formulation.
235

Design of an adaptive power system stabilizer

Jackson, Gregory A. 10 April 2007 (has links)
Modern power networks are being driven ever closer to both their physical and operational limits. As a result, control systems are being increasingly relied on to assure satisfactory system performance. Power system stabilizers (PSSs) are one example of such controllers. Their purpose is to increase system damping and they are typically designed using a model of the network that is valid during nominal operating conditions. The limitation of this design approach is that during off-nominal operating conditions, such as those triggered by daily load fluctuations, performance of the controller can degrade. The research presented in this report attempts to evaluate the possibility of employing an adaptive PSS as a means of avoiding the performance degradation precipitated by off-nominal operation. Conceptually, an adaptive PSS would be capable of identifying changes in the network and then adjusting its parameters to ensure suitable damping of the identified network. This work begins with a detailed look at the identification algorithm employed followed by a similarly detailed examination of the control algorithm that was used. The results of these two investigations are then combined to allow for a preliminary assessment of the performance that could be expected from an adaptive PSS. The results of this research suggest that an adaptive PSS is a possibility but further work is needed to confirm this finding. Testing using more complex network models must be carried out, details pertaining to control parameter tuning must be resolved and closed-loop time domain simulations using the adaptive PSS design remain to be performed.
236

Robust second-order least squares estimation for linear regression models

Chen, Xin 10 November 2010 (has links)
The second-order least-squares estimator (SLSE), which was proposed by Wang (2003), is asymptotically more efficient than the least-squares estimator (LSE) if the third moment of the error distribution is nonzero. However, it is not robust against outliers. In this paper. we propose two robust second-order least-squares estimators (RSLSE) for linear regression models. RSLSE-I and RSLSE-II, where RSLSE-I is robust against X-outliers and RSLSE-II is robust. against X-outliers and Y-outliers. The basic idea is to choose proper weight matrices, which give a zero weight to an outlier. The RSLSEs are asymptotically normally distributed and are highly efficient with high breakdown point.. Moreover, we compare the RSLSEs with the LSE, the SLSE and the robust MM-estimator through simulation studies and real data examples. The results show that they perform very well and are competitive to other robust regression estimators.
237

The effect of sampling error on the interpretation of a least squares regression relating phosporus and chlorophyll

Beedell, David C. (David Charles) January 1995 (has links)
Least squares linear regression is a common tool in ecological research. One of the central assumptions of least squares linear regression is that the independent variable is measured without error. But this variable is measured with error whenever it is a sample mean. The significance of such contraventions is not regularly assessed in ecological studies. A simulation program was made to provide such an assessment. The program requires a hypothetical data set, and using estimates of S$ sp2$ it scatters the hypothetical data to simulate the effect of sampling error. A regression line is drawn through the scattered data, and SSE and r$ sp2$ are measured. This is repeated numerous times (e.g. 1000) to generate probability distributions for r$ sp2$ and SSE. From these distributions it is possible to assess the likelihood of the hypothetical data resulting in a given SSE or r$ sp2$. The method was applied to survey data used in a published TP-CHLa regression (Pace 1984). Beginning with a hypothetical, linear data set (r$ sp2$ = 1), simulated scatter due to sampling exceeded the SSE from the regression through the survey data about 30% of the time. Thus chances are 3 out of 10 that the level of uncertainty found in the surveyed TP-CHLa relationship would be observed if the true relationship were perfectly linear. If this is so, more precise and more comprehensive models will only be possible when better estimates of the means are available. This simulation approach should apply to all least squares regression studies that use sampled means, and should be especially relevant to studies that use log-transformed values.
238

Design of an adaptive power system stabilizer

Jackson, Gregory A. 10 April 2007 (has links)
Modern power networks are being driven ever closer to both their physical and operational limits. As a result, control systems are being increasingly relied on to assure satisfactory system performance. Power system stabilizers (PSSs) are one example of such controllers. Their purpose is to increase system damping and they are typically designed using a model of the network that is valid during nominal operating conditions. The limitation of this design approach is that during off-nominal operating conditions, such as those triggered by daily load fluctuations, performance of the controller can degrade. The research presented in this report attempts to evaluate the possibility of employing an adaptive PSS as a means of avoiding the performance degradation precipitated by off-nominal operation. Conceptually, an adaptive PSS would be capable of identifying changes in the network and then adjusting its parameters to ensure suitable damping of the identified network. This work begins with a detailed look at the identification algorithm employed followed by a similarly detailed examination of the control algorithm that was used. The results of these two investigations are then combined to allow for a preliminary assessment of the performance that could be expected from an adaptive PSS. The results of this research suggest that an adaptive PSS is a possibility but further work is needed to confirm this finding. Testing using more complex network models must be carried out, details pertaining to control parameter tuning must be resolved and closed-loop time domain simulations using the adaptive PSS design remain to be performed.
239

Design And Implementation Of Fir Digital Filters With Variable Frequency Characteristics

Piskin, Hatice 01 December 2005 (has links) (PDF)
Variable digital filters (VDF) find many application areas in communication, audio, speech and image processing. This thesis analyzes design and implementation of FIR digital filters with variable frequency characteristics and introduces two design methods. The design and implementation of the proposed methods are realized on Matlab software program. Various filter design examples and comparisons are also outlilned. One of the major application areas of VDFs is software defined radio (SDR). The interpolation problem on sample rate converter (SRC) unit of the SDR is solved by using these filters. Realizations of VDFs on SRC are outlined and described. Simulations on Simulink and a specific hardware are examined.
240

Efficient Semiparametric Estimators for Nonlinear Regressions and Models under Sample Selection Bias

Kim, Mi Jeong 2012 August 1900 (has links)
We study the consistency, robustness and efficiency of parameter estimation in different but related models via semiparametric approach. First, we revisit the second- order least squares estimator proposed in Wang and Leblanc (2008) and show that the estimator reaches the semiparametric efficiency. We further extend the method to the heteroscedastic error models and propose a semiparametric efficient estimator in this more general setting. Second, we study a class of semiparametric skewed distributions arising when the sample selection process causes sampling bias for the observations. We begin by assuming the anti-symmetric property to the skewing function. Taking into account the symmetric nature of the population distribution, we propose consistent estimators for the center of the symmetric population. These estimators are robust to model misspecification and reach the minimum possible estimation variance. Next, we extend the model to permit a more flexible skewing structure. Without assuming a particular form of the skewing function, we propose both consistent and efficient estimators for the center of the symmetric population using a semiparametric method. We also analyze the asymptotic properties and derive the corresponding inference procedures. Numerical results are provided to support the results and illustrate the finite sample performance of the proposed estimators.

Page generated in 0.0277 seconds