• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 372
  • 149
  • 59
  • 45
  • 15
  • 14
  • 9
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 784
  • 784
  • 784
  • 310
  • 212
  • 201
  • 160
  • 159
  • 149
  • 141
  • 122
  • 119
  • 116
  • 112
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Environmentally conscious design : an economic life cycle approach

Rose, Elliot P. January 1997 (has links)
Companies are under increasing pressure to deal with environmental concerns during product design, for it is the design process which primarily decides the environmental impact of a manufactured product over its life. Tools which assist in taking a life cycle view of the product are a necessary support to designers. Prime amongst these tools is Life Cycle Assessment (LCA). However, a major criticism of LCA methodologies is that while they provide advice on environmentally superior product designs, they do not provide guidance on the economic impact. With product take back increasingly likely to become the responsibility of producer companies attention is now being paid to the later phases of a products life, such as maintenance and disposal costs. A new methodology is shown to be required to complement LCA, one which considers the economic implications of environmentally superior designs over the whole product life. It is argued that a major challenge of such a methodology will be how it deals with the uncertainty associated with the future. The research provides a review of product life cycle design methodologies and a critique of existing approaches to uncertainty. A design teams requirements for decision support that deals with product economic life cycle uncertainty is presented and a decision support methodology which meets these requirements is described. The methodology builds upon the theory of life cycle costing. In practice, the methodology integrates a computer based life cycle model with statistical techniques to quantify the contribution of life cycle variables. In bringing these proven but previously separate tools together the method resolves the issue of uncertainty in a novel and acceptable way. Through the use of an in-depth industrial case study, it is shown that the methodology provides practical support to the design team to produce economically superior product life cycle designs.
12

Developing Anticipatory Life Cycle Assessment Tools to Support Responsible Innovation

January 2016 (has links)
abstract: Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. This dissertation focuses on development of anticipatory LCA tools that incorporate elements of technology forecasting, provide robust explorations of uncertainty, and engage diverse innovation actors in overcoming retrospective approaches to environmental assessment and improvement of emerging technologies. Chapter one contextualizes current LCA practices within the growing literature articulating RRI and identifies the optimal place in the stage gate innovation model to apply LCA. Chapter one concludes with a call to develop anticipatory LCA – building on the theory of anticipatory governance – as a series of methodological improvements that seek to align LCA practices with the objectives of RRI. Chapter two provides a framework for anticipatory LCA, identifies where research from multiple disciplines informs LCA practice, and builds off the recommendations presented in the preceding chapter. Chapter two focuses on crystalline and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is an environmentally motivated technology undergoing extensive R&D efforts and rapid increases in scale of deployment. The chapter concludes with a series of research recommendations that seek to direct PV research agenda towards pathways with the greatest potential for environmental improvement. Similar to PV, engineered nanomaterials (ENMs) are an emerging technology with numerous potential applications, are the subject of active R&D efforts, and are characterized by high uncertainty regarding potential environmental implications. Chapter three introduces a Monte Carlo impact assessment tool based on the toxicity impact assessment model USEtox and demonstrates stochastic characterization factor (CF) development to prioritize risk research with the greatest potential to improve certainty in CFs. The case study explores a hypothetical decision in which personal care product developers are interested in replacing the conventional antioxidant niacinamide with the novel ENM C60, but face high data uncertainty, are unsure regarding potential ecotoxicity impacts associated with this substitution, and do not know what future risk-relevant experiments to invest in that most efficiently improve certainty in the comparison. Results suggest experiments that elucidate C60 partitioning to suspended solids should be prioritized over parameters with little influence on results. This dissertation demonstrates a novel anticipatory approach to exploration of uncertainty in environmental models that can create new, actionable knowledge with potential to guide future research and development decisions. / Dissertation/Thesis / Doctoral Dissertation Civil and Environmental Engineering 2016
13

Atividades humanas e mudanca climatico-ambientais: um arelacao inevitavel / Human activities and climate and environment changes: an inevitable relation

SANCHEZ, ARETHA 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:26:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:20Z (GMT). No. of bitstreams: 0 / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
14

Atividades humanas e mudanca climatico-ambientais: um arelacao inevitavel / Human activities and climate and environment changes: an inevitable relation

SANCHEZ, ARETHA 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:26:43Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:20Z (GMT). No. of bitstreams: 0 / A interferência antrópica no meio ambiente e conseqüente alteração do clima, é hoje um consenso. Esta interferência climática se dá de forma local, regional e, conjuntamente com os gases de efeito estufa, de forma também global. Essa alteração climática, de maneira reversa, interfere por sua vez, no meio ambiente. Tal ciclo de interferências se processa sob várias formas e resulta em várias conseqüências. Porém o chamado Aquecimento Global é, certamente, o efeito de conseqüências globais de maior impacto. A causa principal do aumento da temperatura (Efeito Estufa) está no uso intensivo que se faz de energéticos fósseis. Assim, para minimizar as mudanças climáticas deve-se focar o esforço principalmente em ações que visem à diminuição, substituição e o uso mais eficiente dos energéticos fósseis. Olhando para o passado, parece que os antigos agricultores podem ter lançado gases estufa desde milênios atrás, alterando de maneira lenta, mas significativa, o clima do planeta muito antes do que na Era Industrial. Confirmada essa teoria, suas conseqüências seriam decisivas para a história do homem na Terra. Por exemplo, as temperaturas atuais de partes da América do Norte e Europa poderiam ser até 4 graus Celsius menores, o suficiente para inviabilizar nessas áreas, a agricultura e, conseqüentemente, o desenvolvimento humano e histórico dessas regiões. Este trabalho tem como foco principal fazer uma retrospectiva sobre algumas culturas que colapsaram frente a problemas ambientais e fazer um histórico das atividades humanas ao longo do tempo, desde os primórdios do homem até a Revolução Industrial, notadamente com o que diz respeito à vi agricultura e pecuária, no sentido da sua interferência na dinâmica natural do clima global e no meio ambiente. Mostrando, através de comparações de dados e inferências, que as emissões dessas atividades tiveram uma magnitude até significativa, comparativamente as mudanças induzidas após a própria Revolução Industrial. Demonstra-se, também, que essa interferência climático-ambiental era inevitável, no sentido que a evolução humana deveu-se a essas mesmas atividades. Outro ponto importante é uma reflexão sobre como a evolução humana (e conseqüentemente sua ciência e tecnologia) irá, porventura, encontrar as soluções dos problemas causados por essas mudanças climáticas e ambientais e a importância, neste contexto, para as soluções de problemas de ordem social / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
15

Environmental and Economic Assessment of Rainwater use in a University Dormitory

Schlachter, Hannah January 2011 (has links)
No description available.
16

Life cycle sustainability assessment of alternative green roofs – A systematic literature review

Balasbaneh, A.T., Sher, W., Madun, A., Ashour, Ashraf 22 November 2023 (has links)
Yes / There is general agreement on the importance of green roofs as ways of reducing GHG emissions, reducing overall costs and improving sustainability in urban areas. This systematic literature review highlights life cycle sustainability assessment as an essential criterion to evaluate green roofs. A bibliometric analysis was used to quantitatively review relevant literature. The Scopus database was chosen as a bibliographic database of academic publications. Thes period of search started from 2003 and final search was conducted on February 15, 2023. Based on further in-depth reading, 88 publication records which met the selection criteria, including 74 papers and 14 conference papers. Researchers from the United States contributed almost 31 % of the documents. We evaluated leading studies in this field and discussed assessment method, system boundaries and research gaps through a critical literature review and a systematic search review. Finally, we propose a framework and identify a gap and future research. The environmental aspect of green roofs have received more attention than economic issues. We found that most economic evaluations of green roofs are limited to their construction stage. As yet there is no comprehensive social study on green roofs. We considered a unified study of the economic, environmental impact and social evaluation of green roofs to be warranted. Additionally, various measurement methods should be used to assess the economic profitability of green roofs over the long term. In summary, this study provides a deeper understanding of the environmental, social, and economic performance of green roofs and identifies research gaps as well as future research directions. / The full-text of this article will be released for public view at the end of the publisher embargo on 25 Nov 2024.
17

Impact of silver and titanium dioxide nanoparticles on the in-vessel composting of biodegradable municipal solid waste

Stamou, Ioannis January 2015 (has links)
The extensive use of nanoparticles (NPs) has started receiving increased attention because of the knowledge gaps regarding their fate in the environment and the possible impact on the environment and human health. The production of silver nanoparticles (AgNPs) and titanium dioxide nanoparticles (TiO2-NPs) is increasing and it is expected that, due to their great number of applications, their concentration in waste streams will increase in the future. The presence of NPs in waste streams may affect the treatment process (e.g., composting) and, if they are not successfully removed from the waste streams, their presence in the treated waste (e.g., compost) may present an environmental risk. Composting of the biodegradable fractions of municipal solid waste (MSW) is a widely used waste management practice, mainly because it is a cost-effective treatment technology and the final product (i.e., compost) presents several benefits to the environment, particularly as a soil conditioner. The overall aim of this thesis is to assess the effect of Ag-TiO2NPs and AgNPs that may be present in the biodegradable fractions of municipal solid waste on composting and subsequent soil application of compost. For that purpose in-vessel composting of artificial municipal solid waste contaminated with commercial nanoparticles was investigated at laboratory scale, simulating a range of relevant concentration levels. Subsequently, the fate of NPs present in mature compost use as a top-layer soil conditioner was investigated using a column approach at laboratory scale. The toxicity effect of NPs present mature compost on plant growth was further investigated. The impact of NPs during composting was assessed by monitoring the temporal dynamics of organic matter (OM) using Excitation Emission Matrix (EEM) fluorescence spectroscopy. The fate of NPs following application of contaminated mature compost as a top-soil conditioner and potential release to groundwater was investigated using a column leaching experiment while the phytotoxicity of mature compost contaminated with NPs was assessed using a seed germination bioassay. Finally, to investigate further possible environmental impacts due to the application of mature compost contaminated with NPs to soils, a Life Cycle Assessment (LCA) was conducted. The impact of commercial Ag-TiO2 NPs and AgNPs on the in-vessel composting of biodegradable municipal solid waste was investigated over 21 days, using initial concentrations of 0, 5, 10, 20 and 50 mg Ag / kg of OM. Microbial activity was inhibited in the biodegradable waste reactors using 2% NaN3 to evaluate abiotic losses. Physicochemical parameters such as pH, ash content, weight loss, and the formation of humic substances (HS) were determined after 0, 4, 7, 14 and 21 days of composting and after a maturation phase. The results indicated that the presence of 2% NaN3 in biodegradable MSW inhibited effectively the microbial activity during the first week of composting. The microbial population was activated during the second week of composting but the decomposition rate was so low that did not result in the formation of humic substances (HS) following 21 days of composting when 2% NaN3 was used. Both treatments, using Ag-TiO2-NPs and AgNPs, did not show any inhibition of the decomposition process for all the tested concentrations and EEM peaks shifted towards the HS region during in-vessel composting. Higher inorganic carbon removal resulted from NP-contaminated compost with higher NP concentrations. This may indicate that the formation of humins was higher for non-contaminated compost and decreased as the NP concentration in waste increased. The shift of the peaks towards the HS region during composting for all the treatments suggested that NPs did not have an effect on humification and therefore on compost stability. The leaching properties of the NP-contaminated compost were investigated using a column leaching test. Five samples of leachate, of 50 mL each, were collected. The highest concentrations of HS were observed in the first two leaching samples. The leaching results suggested that only a low percentage of the total NPs (in weight) in compost, up to ca. 5% for Ag and up to ca. 15% for Ti, leached out from the columns, which was assumed the amount that potentially could leach to the environment. These results suggested that NPs will mainly accumulate in soils’ top layers following application of compost contaminated with NP. The phytotoxicity of NP-contaminated compost was assessed using a seed germination bioassay and the germination index was then calculated. The results indicated that the NP-contaminated compost did not present any toxic effects to cress germination. The possible environmental impacts due to the NP-contaminated compost application to soils were investigated by conducting a comparative LCA study. The LCA study indicated that the effects of NP-contaminated compost to human health and ecosystems endpoint categories increased due to the presence of NPs. The risks are associated with terrestrial ecotoxicity and human toxicity midpoint categories and are mainly attributed to the accumulation of Ag to soils.
18

Novel retrofit technologies incorporating silica aerogel for lower energy buildings

Dowson, Mark January 2012 (has links)
The aim of this Engineering Doctorate is to design, build and test novel environmental retrofit technologies to reduce energy consumption in existing buildings. Three contributions to knowledge are documented. The first contribution is the technical verification of a novel proof-of-principle prototype incorporating translucent silica aerogel granules to improve the thermal performance of existing windows without blocking out all of the useful natural light. The study demonstrates that a 10 mm thick prototype panel can reduce heat loss by 80 %, without detrimental reductions in light transmission. Payback periods of 3.5-9.5 years are predicted if applied as openable shutters or removable secondary glazing. The second contribution is a streamlined life cycle assessment of silica aerogel following the ISO 14000 standards. The study assesses the raw materials and electricity use associated with two of the three known methods of aerogel production. Despite being produced in a laboratory that had not been refined for mass manufacture, the production energy and CO2 burden from aerogel production can be recovered within 0-2 years when applied in a glazing application. The third contribution is the development and verification of a novel solar air heater incorporating granular aerogel, retrofitted to an external south facing wall, preheating the air in a mechanical ventilation system with heat recovery on a hard4to4 treat domestic property. During the 7-day in-situ test, peak outlet temperatures up to 45 °C were observed and validated to within 5 % of predictions, preheating the dwelling’s fresh air supply up to 30 °C, facilitating internal temperatures of 21-22 °C without auxiliary heating. The predicted financial and CO2 payback for a range of cover thicknesses is 7-13 years and 0-1 years, respectively. Efficiency up to 60 % and a financial payback of 4.5 years is predicted with an optimised design incorporating a 10 mm thick granular aerogel cover.
19

Environmental impacts of food waste in a life cycle perspective : A case study in a Swedish supermarket

Brancoli, Pedro January 2016 (has links)
The food production system has been acknowledged as a problem that needs to be addressed in order to achieve a sustainable society. Hertwich and Peters (2009), estimate that 10-30% of an individual’s environmental impact is related to the industrial production and consumption of food. The problem is aggravated by the wastage of one third of the global food production. The consequences of the wastage of food are the loss of resources, such as energy, water, land and labour and unnecessary emissions of pollutants. In order to address this problem several actions have been proposed. The Sustainable Development Goal 12.3, which Sweden has committed to fulfil, aims to reduce by half the amount of food waste along the production and supply chain by 2030. Retail is an important player in the food supply chain. Its influence spreads both upstream to suppliers and downstream to consumers. Therefore, this research aims to contribute to reduction of the environmental impacts related to food waste in retail, by identifying products with high environmental impacts. The main goals of this study are 1) the quantification of food waste produced by the supermarket and 2) to examine the environmental impacts of selected products in order to assess the impacts generated by the waste production at the supermarket. The findings of the research revealed 1) the importance of not only measuring the food waste in terms of mass, but also in terms of environmental indicators and costs. The results indicate bread as an important contributor for the environmental footprint of the supermarket and a potential product for interventions 2) Sorting the organic content of the products from its packaging before sending it to the current waste treatment leads to a reduction in the carbon footprint. The research identified the following recommendations: 1) increasing supermarket personnel and consumers’ awareness regarding the environmental impact of food waste, 2) finding alternative routes for waste treatment and 3) improving logistic operations.
20

Cost-benefit analysis of microgenerators : an integrated appraisal perspective

Harajli, Hassan A. January 2009 (has links)
The UK domestic building sector accounts for a substantial amount of the final energy demand and greenhouse gas (GHG) emissions. To this extent, the sector can play an important role in GHG abatement and energy demand reduction, essential objectives of a more ‘sustainable energy system’. Microgeneration, or production of electricity or heat from small-scale sources, have been advocated by some, including the Supergen ‘Highly Distributed Power Systems Consortium’ to which this thesis contributes, as important means towards achieving these objectives. In this thesis, three assessed microgenerators; specifically a 600W microwind system, 2.1 kWp photovoltaic (PV) and building-integrated photovoltaic (BIPV) systems, and a 2.8m2 solar hot water (SHW) system have been analysed through an ‘integrated appraisal toolkit’ in order to assess their respective economic and financial performance in current UK context. A cost-benefit analysis (CBA) is applied, based on outputs and results from energy analysis and life-cycle assessment (LCA), and other tools such as financial appraisal, cost-effective analysis (CEA), and simple multi-attribute ranking technique (SMART) are also performed in order to asses how these systems perform on an individual household level or when compared to other energy technologies. The CBA, which included environmental impacts quantified through the LCA, obtained negative net present values (NPVs) for all the assessed microgenerators with the exception of microwind in a high-wind resourced ‘open’ area with lower end capital costs. The NPVs in the financial appraisal, which excluded environmental impacts, yielded relatively poorer results still. Only with the proposed feed-in tariffs would the systems all achieve positive NPVs. Given that the CBA included a substantial qualitative part, alternative tools, such as CEA and multi-criteria evaluation were applied (in brief) in order to place the assessed systems in the context of other energy generating sources in the UK, and to enable a more confident decision with respect to whether these systems should be advocated or rejected.

Page generated in 0.0625 seconds