• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 723
  • 168
  • 107
  • 88
  • 27
  • 27
  • 27
  • 27
  • 27
  • 26
  • 25
  • 24
  • 15
  • 11
  • 6
  • Tagged with
  • 1529
  • 421
  • 304
  • 260
  • 209
  • 172
  • 166
  • 164
  • 154
  • 153
  • 153
  • 144
  • 138
  • 104
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Brillouin and neutron scattering study of hexagonal ABX3 ternary halides

Hashim, Dayang Maryani Awang January 1995 (has links)
The interest in one dimensional (1D) magnetism has been strongly renewed with the synthesis of many magnetic compounds which exhibit a quasi one dimensional magnetic behaviour. One of the peculiarities of this 1D system is the absence of a long range magnetic ordered phase at any finite temperature for the ideal 1D system with short range interaction. Tetramethylammonium manganese chloride (CH3)4NMnCl3(TMMC) exhibits the properties of an ideal one dimensional antiferromagnets for temperature above 1 K, the transition to a three dimensional (3D) long range ordered state only occurs at 0.84K. In addition to its magnetic transition, TMMC exhibits structural phase transition due to the ordering of the tetramethylammonium (TMA) ions which makes also this compound very attractive from a lattice dynamical point of view. Structural phase transitions of tetramethylammonium manganese chloride (TMMC), tetramethylammonium manganese bromide (TMMB) and tetramethylammonium manganese chloride doped with 8% Cu (TMMC:Cu) of the hexagonal type compounds are investigated using the Brillouin scattering method. These crystals show pronounced acoustic anomalies in the region of the structural phase transition. The acoustic anomalies were observed by measuring sound velocity and hence the elastic constant can be deduced. The phase transition temperatures were observed at 129.6K and 388.6K (TMMC), 114.6K and 377.6K (TMMB) and at 108.6K and 359.6K (TMMC:Cu). The elastic constant at room temperature were C11 = 2.10 (TMMC) and C11 = 1.59 (TMMB) in units of 1010 Nm-2. The phase transition of these compounds were further investigated macroscopically using the Differential Scanning Calorimetry (DSC) method. Activation energies of TMMC, TMMC:Cu, TMMB and deuterated TMMB at the phase transition were determined using this method. The values are 70.612 kJ/mol (TMMC), 49.224 kJ/mol (TMMC:Cu), 51.747 kJ/mol (TMMB) and 69.909 kJ/mol (d12-TMMB). The elastic constant of the linear chain antiferromagnet CsNiCl3 and RbNiCl3 was also determined using the Brillouin scattering method. The room temperature measurements give C11 = 3.77 (3.71) and C33 = 5.62 (5.42) in units of 1010 Nm·2 for CsNiCl3 and RbNiCl3 respectively. The phonon dispersion curves at room temperature in the hexagonal CsFeBr3 have been studied using the inelastic neutron scattering technique. From the initial slope of the dispersion curve, the sound velocity was deduced which enable us to calculate the elastic constant of CsFeBr3 at room temperature. The values obtained are C11 = 7.33, C66 = 1.01, C33 = 2.58 and C44 = 0.56 in units of 1010 Nm·2.
312

New methods for measuring CSA tensors : applications to nucleotides and nucleosides

Wu, Yanqi January 2011 (has links)
A novel version of the CSA (Chemical Shift Anisotropy) amplification experiment which results in large amplification factors is introduced. Large xa (up to 48) are achieved by sequences which are efficient in terms of the number of π pulses and total duration compared to a modification due to Orr et al. (2005), and greater flexibility in terms of the choice of amplification factor is possible than in our most recent version. Furthermore, the incorporation of XiX decoupling ensures the overall sensitivity of the experiment is optimal. This advantage has been proved by extracting the CSA tensors for a novel vinylphosphonate-linked nucleotide. The application of CSA amplification experiment to six nucleosides is also discussed. The measured principal tensor values are compared with those calculated using the recently developed first-principles methods. Throughout this work, the NMR parameters of all nucleosides are presented. Finally, high-resolution multi-nuclear solid-state NMR experiments are used to study some novel vinyl phosphonate-linked oligo-nucleotides.
313

Magnetic resonance imaging of colonic function

Placidi, Elisa January 2011 (has links)
The overall aim of this work was to develop MRI methods and techniques to study the physiology and the pathology of the gastrointestinal tract, with particular attention to the colon. Besides, the development of new methods was aimed in order to perform quantitative analysis using proton and fluorine MRI. In particular the first experimental chapter describes the development and the optimisation of imaging protocols for studying colonic function in undisturbed physiologically relevant conditions. In addition a texture analysis method based on Gabor filters is developed and used for the objective assessment of colonic content characteristics. The mechanisms of action of common anti-diarrhoeal and anti-constipation agents are also investigated. The last experimental chapter describes the development of methods for using markers to measure GI transit. Transit time, i.e. the time it takes for a marker to pass through the entire gut, is often affected by functional gastrointestinal disorders, therefore it is of primary importance to develop a non-invasive and effective technique for the diagnosis of such gastrointestinal diseases. The use of fluorinated agents and its many advantages compared to other techniques is outlined and the first in vivo studies at high field are presented. The use of gadolinium based compounds as an additional marker is also discussed.
314

Development of arterial spin labelling methods for monitoring cerebral haemodynamics

Wesołowski, Roman January 2010 (has links)
The work described in this thesis was carried out at the Sir Peter Mansfield Magnetic Resonance Centre at the University of Nottingham between March 2006 and December 2009. All work described in this thesis was performed by the author, except where indicated. This thesis aims to develop and implement ASL techniques to measure haemodynamic responses to neural activity. The development of a new technique Double Acquisition Background Suppression (DABS) is presented as a remedy for a newly discovered artefact affecting Philips Achieva 7 T scanners and other sources of variation in baseline signals such as physiological noise. The new technique (DABS) was developed for simultaneous acquisition of ASL (with suppressed static tissue signal) and BOLD data using the FAIR scheme. This method not only provided a solution to obtaining ASL data at 7 T, despite the Roman Artefact, but also proved to reduce the contribution of physiological noise to ASL images, which is problematic, especially at ultra-high magnetic field strengths. The statistical verification was carried out based on the neural activation induced by a finger-tapping stimulus. A simplified model for quantifying CBVa.with the Look-Locker sampling method is proposed in this thesis to overcome the need for the Step-wise Compartmental Model (SCM). The Look-Locker sampling scheme acquires multiple readout pulses following the labelling and provides an estimation of transit time as well as CBVa. Here the simplified model is used to assess changes due to visual stimulation and validated against the SCM model. The application of LL-FAIR to form CBF and CBVa weighted data with improved SNR compared to traditional single TI FAIR technique is then shown. This method uses a summation over LL-EPI readout pulses and is used to asses the temporal characteristics and absolute changes in CBF and CBVa haemodynamic responses to a short (4.8 s) and long (9.6 s) visual stimulus. LL-FAIR methods are then used to appraise the neural coupling of haemodynamic parameters and assess Grubb's relationship. CBF and CBVa. Data were collected together with CBVtot data from a bolus injection of contrast agent. Assessing Grubb's power-law (CBVtot = CBFCI:)for neuronal activation, which was originally derived in primates during a steady state response of hypercapnia, a was found in this human study to be between 0.22 ± 0.08 and 0.29, dependent on the analysis method. In addition, the power-law relationship between CBVtot and CBVa.was assessed, and resulted in a similar relation, yielding aTA = 0.42 ± 0.14 and 0.40. Since CBF is thought to be driven by CBVa.the power-law between these parameters was also tested with a value of aFA = 1.35 ± 0.64 and 1.21, found in close agreement with earlier animal work.
315

Effect of exchange and magnetostatic interactions on grain boundaries

Barron, Louise Lillias Margaret January 2011 (has links)
Magnetic minerals are abundant within our Earth's crust and can retain, through one of a number of processes, a remanent magnetisation induced by the Earth's magnetic field. Analyses of palaeomagnetic samples have been used for the past fifty years to improve our understanding of many of the Earth's major processes. Recent studies utilising newly developed imaging techniques, namely holographic transmission electron microscopy, have for the first time allowed direct observations of the magnetic structure in palaeomagnetic samples on a nanoscale. It is commonly observed that igneous rocks contain closely packed magnetic lamellae with a non-magnetic matrix, a result of the chemical process of exsolution. However, the results of current micromagnetic models, generated to predict the magnetic structure within such samples, are not in agreement with these direct observations. The results do, however, show strong similarities to the direct observations. The discrepancies between the direct observations and micromagnetic models indicate a lack of understanding of the magnetic interactions within such samples. To examine this two distinct hypotheses have been tested. Firstly, the geometry of the system has been altered to examine the effect of this on the magnetic structure of the grains. Secondly, a multiphase model has been produced. This multiphase model allows the simulation of more complicated systems that include more than one magnetic material in direct contact. This multiphase model has allowed us to examine the effect of varying the exchange in these multiphase structures and its effect on the modelled magnetic structure. Further, this multiphase model has allowed us to examine theoretical systems involving combinations of magnetic materials commonly found in palaeomagnetic samples.
316

Hybrid simulation of the interaction of solar wind protons with a concentrated lunar magnetic anomaly

Giacalone, J., Hood, L. L. 06 1900 (has links)
Using a two-dimensional hybrid simulation, we study the physics of the interaction of the solar wind with a localized magnetic field concentration, or “magcon,” on the Moon. Our simulation treats the solar wind protons kinetically and the electrons as a charge-neutralizing fluid. This approach is necessary because the characteristic scale of the magcon is of the same order or smaller than the proton inertial length—the characteristic scale in the hybrid simulation. Specifically, we consider a case in which the incident solar wind flows exactly normal to the lunar surface, and the magcon is represented by a simple dipole whose moment is parallel to the surface, with a center just below it. We find that while the magcon causes the solar wind to be deflected and decelerated, it does not completely shield the lunar surface anywhere. However, protons which impact the surface in the center of the magnetic anomaly have energies well below the solar wind ram energy. Thus, in this region, any backscattered neutral particles resulting from the interaction of solar wind protons with the lunar regolith would have energies lower than that of the solar wind. Moreover, very few neutrals, if any, would emanate from within the magcon with energies comparable to the solar wind energy. This may explain recent observations of lunar energetic neutral atoms associated with a strong crustal magnetic anomaly. Our study also finds that a significant fraction of the incoming solar wind protons are reflected back into space before reaching the surface. These particles are reflected by a strong electrostatic field which results from the difference in the proton and electron inertia. The reflected particles are seen at very high altitudes above the Moon, over 200 km, and over a much broader spatial scale than the magcon, several hundred kilometers at least. Our simulation also revealed a second population of reflected particles which originate from the side of the magcon where the interplanetary and magcon magnetic fields are directed opposite to one another, leading to a magnetic topology much like magnetic reconnection. As previously reflected particles move through this region, they are deflected upward, away from the surface, forming a second component. Our simulation has a number of similarities to recent in situ spacecraft observations of reflected ions above and around magcons.
317

Magnetocrystalline Anisotropy in(FexNi1-x)2B Materials

Stangel, Anders January 2016 (has links)
The magnetic properties of the (FexNi1-x)2B family of materials are explored using DFT calculations utilizing the FPLO and SPR-KKR code packages. It is found that a uniaxial magnetocrystalline anisotropy exists at around x = 0.8 with a magnetocrystalline anisotropy energy at around 0.3 MJ/m^3. A calculation of the lattice constant for these materials were attempted but failed due to the emergence of local minima and the calculations of magnetic properties were instead done using lattice parameters interpolated between known experimental values.
318

Magnetic Properties of Oxovanadium(IV) Complexes of Substituted N-(Hydroxylalkyl) Salicylideneimines

Carey, Elbert Franklin 05 1900 (has links)
A series of oxovanadium(IV) complexes of Schiff bases derived from substituted salicylaldehyde and aminoalcohols has been prepared and characterized. The Schiff bases coordinate through 0, N, and 0 as tridentate bivalent ligands. The primary purpose of the investigation is to describe the structure and bonding in these complexes. The subnormal magnetic properties of the complexes provide much information about both the structure and the bonding in the complexes.
319

Magnetoplasmonic nanostructures

Melander, Emil January 2016 (has links)
Surfaces that are nanopatterned, metallic, and magnetic can support surface plasmon resonances, providing an alternative and effective way to reconfigure flat optical components. Utilising a range of near- and far-field characterisation techniques, the optical and magneto-optical properties of lithographically patterned thin magnetic films are investigated. A magneto-optical diffractometer was designed, assembled, and commissioned to characterise periodic magneto-plasmonic nanostructures. For Ni and Co nanostructured antidot arrays, enhanced values of the magneto-optical Kerr rotation were recorded for energies and angles corresponding to excitations of surface plasmon polaritons. This enhancement was found to be thickness dependent. Modification of the optical properties via applied transverse magnetic fields and the excitation of surface plasmon polaritons, was demonstrated for an antidot array of pure Ni. The excitation was also shown to enhance the generation of second harmonics, as well as further activate nonlinear-optical mechanisms. In order to fully resolve and explain the source of this remarkable magneto-optical activity, near field probing techniques were used. This allows for mapping the electric near-field with a sub-wavelength resolution, thereby revealing the interplay between the light and the nanostructured lattice. The measurements show that the electric near field intensification, induced by plasmon excitation, increases the polarisation conversion, which correlates to the observed magneto-optical Kerr rotation.
320

The search for a unit magnetic pole in nuclear emulsions

Parnell, Darrell Ray. January 1959 (has links)
Call number: LD2668 .T4 1959 P38

Page generated in 0.0326 seconds