• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 322
  • 106
  • 92
  • 46
  • 9
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 773
  • 773
  • 300
  • 135
  • 128
  • 115
  • 98
  • 97
  • 86
  • 85
  • 74
  • 69
  • 68
  • 67
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Effect of mass transfer on the rate of heat transfer to stationary spheres in high temperature surroundings : a thesis

Randhawa, Ejaz Hussain. January 1981 (has links)
No description available.
102

Natural convection mass transfer to particles

Astrauskar, Peter. January 1980 (has links)
No description available.
103

Chemical reaction and interphase mass transfer in gas fluidized beds.

Chaverie, Claude. January 1973 (has links)
No description available.
104

Mass transfer between pentane and heavy hydrocarbons

Sadighian, Ardalan 06 1900 (has links)
The demand for accurate bitumen-pentane mass transfer data was the main motivation behind this research. Difficulties such as complex phase behavior, high viscosity and opacity of the hydrocarbon invariably lead to failure of conventional techniques to measure mass transfer coefficients involving heavy oils. To address this issue, X-ray transmission tomography has been employed for such measurements. The initial set of experiments in this study measured the free mutual diffusion coefficient of pentane-Athabasca/bitumen, as well as pentane-atmospheric residue. In addition, forced mass transfer between pentane and both bitumen and atmospheric residue was studied. Forced mass transfer between pentane and these two heavy oils followed a similar pattern when normalized and the pattern is consistent with prevailing understanding. However, mass transfer rates between pentane and Athabasca atmospheric residue are one order of magnitude smaller than for the corresponding bitumen case. Impacts on the effectiveness of proposed production and refining processes are discussed. / Chemical Engineering
105

Mass transfer and hydrodynamic behaviour of spray and packed columns in supercritical fluid extraction /

Chun, Byung-Soo. Unknown Date (has links)
Thesis (PhD) -- University of South Australia, 1994
106

Numerical modelling of heat and mass transfer and optimisation of a natural draft wet cooling tower

Williamson, Nicholas J January 2008 (has links)
Doctor of Philosophy / The main contribution of this work is to answer several important questions relating to natural draft wet cooling tower (NDWCT) modelling, design and optimisation. Specifically, the work aims to conduct a detailed analysis of the heat and mass transfer processes in a NDWCT, to determine how significant the radial non-uniformity of heat and mass transfer across a NDWCT is, what the underlying causes of the non-uniformity are and how these influence tower performance. Secondly, the work aims to determine what are the consequences of this non-uniformity for the traditional one dimensional design methods, which neglect any two-dimensional air flow or heat transfer effects. Finally, in the context of radial non-uniformity of heat and mass transfer, this work aims to determine the optimal arrangement of fill depth and water distribution across a NDWCT and to quantify the improvement in tower performance using this non-uniform distribution. To this end, an axisymmetric numerical model of a NDWCT has been developed. A study was conducted testing the influence of key design and operating parameters. The results show that in most cases the air flow is quite uniform across the tower due to the significant flow restriction through the fill and spray zone regions. There can be considerable radial non-uniformity of heat transfer and water outlet temperature in spite of this. This is largely due to the cooling load in the rain zone and the radial air flow there. High radial non-uniformity of heat transfer can be expected when the cooling load in the rain zone is high. Such a situation can arise with small droplet sizes, low fill depths, high water flow rates. The results show that the effect of tower inlet height on radial non-uniformity is surprisingly very small. Of the parameters considered the water mass flow rate and droplet size and droplet distribution in the rain zone have the most influence on radial noniv uniformity of heat transfer. The predictions of the axisymmetric numerical model have been compared with a one dimensional NDWCT model. The difference between the predictions of tower cooling range is very low, generally around 1-2%. This extraordinarily close comparison supports the assumptions of one dimensional flow and bulk averaged heat transfer implicit in these models. Under the range of parameters tested here the difference between the CFD models predictions and those of the one dimensional models remained fairly constant suggesting that there is no particular area where the flow/heat transfer becomes so skewed or non-uniform that the one dimensional model predictions begin to fail. An extended one dimensional model, with semi-two dimensional capability, has been developed for use with an evolutionary optimisation algorithm. The two dimensional characteristics are represented through a radial profile of the air enthalpy at the fill inlet which has been derived from the CFD results. The resulting optimal shape redistributes the fill volume from the tower centre to the outer regions near the tower inlet. The water flow rate is also increased here as expected, to balance the cooling load across the tower, making use of the cooler air near the inlet. The improvement has been shown to be very small however. The work demonstrates that, contrary to common belief, the potential improvement from multi-dimensional optimisation is actually quite small.
107

Numerical modelling of heat and mass transfer and optimisation of a natural draft wet cooling tower

Williamson, Nicholas J January 2008 (has links)
Doctor of Philosophy / The main contribution of this work is to answer several important questions relating to natural draft wet cooling tower (NDWCT) modelling, design and optimisation. Specifically, the work aims to conduct a detailed analysis of the heat and mass transfer processes in a NDWCT, to determine how significant the radial non-uniformity of heat and mass transfer across a NDWCT is, what the underlying causes of the non-uniformity are and how these influence tower performance. Secondly, the work aims to determine what are the consequences of this non-uniformity for the traditional one dimensional design methods, which neglect any two-dimensional air flow or heat transfer effects. Finally, in the context of radial non-uniformity of heat and mass transfer, this work aims to determine the optimal arrangement of fill depth and water distribution across a NDWCT and to quantify the improvement in tower performance using this non-uniform distribution. To this end, an axisymmetric numerical model of a NDWCT has been developed. A study was conducted testing the influence of key design and operating parameters. The results show that in most cases the air flow is quite uniform across the tower due to the significant flow restriction through the fill and spray zone regions. There can be considerable radial non-uniformity of heat transfer and water outlet temperature in spite of this. This is largely due to the cooling load in the rain zone and the radial air flow there. High radial non-uniformity of heat transfer can be expected when the cooling load in the rain zone is high. Such a situation can arise with small droplet sizes, low fill depths, high water flow rates. The results show that the effect of tower inlet height on radial non-uniformity is surprisingly very small. Of the parameters considered the water mass flow rate and droplet size and droplet distribution in the rain zone have the most influence on radial noniv uniformity of heat transfer. The predictions of the axisymmetric numerical model have been compared with a one dimensional NDWCT model. The difference between the predictions of tower cooling range is very low, generally around 1-2%. This extraordinarily close comparison supports the assumptions of one dimensional flow and bulk averaged heat transfer implicit in these models. Under the range of parameters tested here the difference between the CFD models predictions and those of the one dimensional models remained fairly constant suggesting that there is no particular area where the flow/heat transfer becomes so skewed or non-uniform that the one dimensional model predictions begin to fail. An extended one dimensional model, with semi-two dimensional capability, has been developed for use with an evolutionary optimisation algorithm. The two dimensional characteristics are represented through a radial profile of the air enthalpy at the fill inlet which has been derived from the CFD results. The resulting optimal shape redistributes the fill volume from the tower centre to the outer regions near the tower inlet. The water flow rate is also increased here as expected, to balance the cooling load across the tower, making use of the cooler air near the inlet. The improvement has been shown to be very small however. The work demonstrates that, contrary to common belief, the potential improvement from multi-dimensional optimisation is actually quite small.
108

Modeling high viscosity melt phase polycondensation reactors using direct inclusion of experimental mixing data

Neogi, Swati. January 1992 (has links)
Thesis (Ph. D.)--Ohio University, November, 1992. / Title from PDF t.p.
109

Transport phenomena in viscous flow and particle motion in fluidized beds /

Mitchell, William James. January 1988 (has links) (PDF)
Thesis (M.E. Sc.)--Dept. of Chemical Engineering, University of Adelaide, 1990. / Typescript (Photocopy). Includes bibliographical references (leaves 112-115).
110

Shell-side fluid dynamics and mass transfer through hollow fibre membrane modules /

Costello, Michael John. January 1995 (has links)
Thesis (Ph. D.)--University of New South Wales, 1995. / Also available online.

Page generated in 0.0279 seconds