• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] ENVELOPE OF MID-PLANES / [pt] ENVELOPE DE PLANOS MÉDIOS

ADY CAMBRAIA JUNIOR 18 November 2015 (has links)
[pt] O Envelope de Retas Médias - ERM consiste da união de três conjuntos invariantes afins: o Affine Envelope Symmetry Set - AESS; o Mid-Parallel Tangents Locus - MPTL; e a Evoluta Afim - EA. O ERM de curvas planas convexas é um assunto que tem sido muito explorado. Porém, não existe na literatura nenhum estudo do ERM para superfícies. Por isso, o objetivo principal desta tese é generalizar o ERM de curvas convexas para superfícies convexas. Para tanto, dividimos a tese em duas partes. A primeira consiste de uma revisão sobre a geometria afim de curvas planas e do estudo do ERM com uma nova abordagem. Na segunda parte realizamos uma breve introdução da geometria afim de hipersuperfícies e a generalização do ERM. Na generalização do ERM, trabalhamos com superfícies, definimos os planos médios e estudamos o que denominamos Envelope de Planos Médios -EPM. Provamos que, o EPM assim como o ERM, é formado por três conjuntos invariantes afins: a Superfície de Centros de 3 mais 3-Cônicas - SC3C; o Mid-Parallel Tangents Surface -MPTS; e a Evoluta de Curvas Médias - ECM. / [en] The Envelope of Mid-Lines - EML consists of the union of three affine invariant sets: the Affine Envelope Symmetry Set - AESS; the Mid-Parallel Tangents Locus - MPTL; and the Affine Evolute. The EML of convex planar curves is a subject that has been very explored. However, there is no study in the literature of the EML for surfaces. Therefore, the main objective of this thesis is to generalize the EML of convex curves to convex surfaces. We divide the writing into two parts. The first part consists of a study of the EML with a new approach. In the second part we consider the EML for surfaces, that we call Envelope of Mid-Planes - EMP. We prove that, the EMP, like the EML, is formed by three affine invariant sets: the Centers of 3 plus 3-Conics Surface - C3CS; the Mid-Parallel Tangents Surface -MPTS; and the Medial Curves Evolute - MCE.

Page generated in 0.028 seconds