Spelling suggestions: "subject:"[een] MIXING LAYER"" "subject:"[enn] MIXING LAYER""
1 |
Statistics of the turbulent/non-turbulent interface in a spatially evolving mixing layerCristancho, Juan 12 1900 (has links)
The thin interface separating the inner turbulent region from the outer irrotational
fluid is analyzed in a direct numerical simulation of a spatially developing turbulent
mixing layer. A vorticity threshold is defined to detect the interface separating the
turbulent from the non-turbulent regions of the
flow, and to calculate statistics conditioned
on the distance from this interface. Velocity and passive scalar statistics are
computed and compared to the results of studies addressing other shear
flows, such
as turbulent jets and wakes. The conditional statistics for velocity are in remarkable
agreement with the results for other types of free shear
flow available in the literature.
In addition, a detailed analysis of the passive scalar field (with Sc 1) in the vicinity
of the interface is presented. The scalar has a jump at the interface, even stronger
than that observed for velocity. The strong jump for the scalar has been observed
before in the case of high Schmidt number, but it is a new result for Schmidt number
of order one. Finally, the dissipation for the kinetic energy and the scalar are presented.
While the kinetic energy dissipation has its maximum far from the interface,
the scalar dissipation is characterized by a strong peak very close to the interface.
|
2 |
Confined Reacting Supersonic Mixing Layer - A DNS Study With Analysis Of Turbulence And Combustion ModelsChakraborty, Debasis 06 1900 (has links) (PDF)
No description available.
|
3 |
Comparison of Two Vortex-in-cell Schemes Implemented to a Three-dimensional Temporal Mixing LayerSadek, Nabel 24 August 2012 (has links)
Numerical simulations are presented for three dimensional viscous incompressible free shear flows. The numerical method is based on solving the vorticity equation using Vortex-In-Cell method. In this method, the vorticity field is discretized into a finite set of Lagrangian elements (particles) and the computational domain is covered by Eulerian mesh. Velocity field is computed on the mesh by solving Poisson equation. The solution proceeds in time by advecting the particles with the flow. Second order Adam-Bashford method is used for time integration. Exchange of information between Lagrangian particles and Eulerian grid is carried out using the M’4 interpolation scheme. The classical inviscid scheme is enhanced to account for stretching and viscous effects. For that matter, two schemes are used. The first one used periodic remeshing of the vortex particles along with fourth order finite difference approximation for the partial derivatives of the stretching and viscous terms. In the second scheme, derivatives are approximated by least squares polynomial. The novelty of this work is signified by using the moving least squares technique within the framework of the Vortex-in-Cell method and implementing it to a three dimensional temporal mixing layer. Comparisons of the mean flow and velocity statistics are made with experimental studies. The results confirm the validity of the present schemes. Both schemes also demonstrate capability to qualitatively capture significant flow scales, and allow gaining physical insight as to the development of instabilities and the formation of three dimensional vortex structures. The two schemes show acceptable low numerical diffusion as well.
|
4 |
Comparison of Two Vortex-in-cell Schemes Implemented to a Three-dimensional Temporal Mixing LayerSadek, Nabel 24 August 2012 (has links)
Numerical simulations are presented for three dimensional viscous incompressible free shear flows. The numerical method is based on solving the vorticity equation using Vortex-In-Cell method. In this method, the vorticity field is discretized into a finite set of Lagrangian elements (particles) and the computational domain is covered by Eulerian mesh. Velocity field is computed on the mesh by solving Poisson equation. The solution proceeds in time by advecting the particles with the flow. Second order Adam-Bashford method is used for time integration. Exchange of information between Lagrangian particles and Eulerian grid is carried out using the M’4 interpolation scheme. The classical inviscid scheme is enhanced to account for stretching and viscous effects. For that matter, two schemes are used. The first one used periodic remeshing of the vortex particles along with fourth order finite difference approximation for the partial derivatives of the stretching and viscous terms. In the second scheme, derivatives are approximated by least squares polynomial. The novelty of this work is signified by using the moving least squares technique within the framework of the Vortex-in-Cell method and implementing it to a three dimensional temporal mixing layer. Comparisons of the mean flow and velocity statistics are made with experimental studies. The results confirm the validity of the present schemes. Both schemes also demonstrate capability to qualitatively capture significant flow scales, and allow gaining physical insight as to the development of instabilities and the formation of three dimensional vortex structures. The two schemes show acceptable low numerical diffusion as well.
|
5 |
Comparison of Two Vortex-in-cell Schemes Implemented to a Three-dimensional Temporal Mixing LayerSadek, Nabel January 2012 (has links)
Numerical simulations are presented for three dimensional viscous incompressible free shear flows. The numerical method is based on solving the vorticity equation using Vortex-In-Cell method. In this method, the vorticity field is discretized into a finite set of Lagrangian elements (particles) and the computational domain is covered by Eulerian mesh. Velocity field is computed on the mesh by solving Poisson equation. The solution proceeds in time by advecting the particles with the flow. Second order Adam-Bashford method is used for time integration. Exchange of information between Lagrangian particles and Eulerian grid is carried out using the M’4 interpolation scheme. The classical inviscid scheme is enhanced to account for stretching and viscous effects. For that matter, two schemes are used. The first one used periodic remeshing of the vortex particles along with fourth order finite difference approximation for the partial derivatives of the stretching and viscous terms. In the second scheme, derivatives are approximated by least squares polynomial. The novelty of this work is signified by using the moving least squares technique within the framework of the Vortex-in-Cell method and implementing it to a three dimensional temporal mixing layer. Comparisons of the mean flow and velocity statistics are made with experimental studies. The results confirm the validity of the present schemes. Both schemes also demonstrate capability to qualitatively capture significant flow scales, and allow gaining physical insight as to the development of instabilities and the formation of three dimensional vortex structures. The two schemes show acceptable low numerical diffusion as well.
|
6 |
ALGEBRAIC REYNOLDS STRESS MODELING OF PLANAR MIXING LAYER FLOWSYODER, DENNIS ALLEN 13 July 2005 (has links)
No description available.
|
7 |
Large Eddy Simulations Of Compressible Mixing LayersBodi, Kowsik V R 04 1900 (has links) (PDF)
No description available.
|
8 |
Étude expérimentale de la turbulence dans une couche de mélange anisotherme / Expérimental study of turbulence in a non-isothermal mixing layerSodjavi, Kodjovi 11 March 2013 (has links)
L'étude porte sur une couche de mélange plane horizontale générée par la rencontre de deux écoulements parallèles à vitesse et température différentes. Le mélange turbulent est analysé pour différentes conditions initiales en termes de gradients de vitesse et de température. On distingue en particulier des configurations en régime de stratification stable et instable sous l'effet des forces de flottabilité. L'analyse des corrélations entre les fluctuations de vitesse et de température s'appuie sur la technique expérimentale d'anémométrie à température de fil variable (PCTA), qui permet la mesure instantanée de la vitesse et de la température en un même point grâce à la variation périodique et par palier du coefficient de surchauffe du fil chaud utilisé. Un premier travail a consisté à étendre la technique PCTA à l'utilisation de fils croisés pour la mesure simultanée de la température et de deux composantes de la vitesse. Dans un premier temps, les statistiques en un point permettent d'identifier les caractéristiques de l'écoulement dans la région de similitude et d'y établir les équations de bilan pour l'énergie cinétique turbulente, l'intensité des fluctuations de température et les flux de quantité de mouvement et de chaleur. Il apparaît, vu les faibles nombres de Richardson en jeu (Rif<0,03), que les forces de flottabilité sont quasi-négligeables devant les moteurs principaux du mouvement. Pourtant, ce forçage thermique peu énergétique est suffisant, en configuration instable, pour augmenter significativement le taux d'expansion et la contrainte de cisaillement, ce qui correspond de fait à une augmentation de la production de turbulence. L'analyse des densités de probabilité jointes permet ensuite de mettre en évidence les mécanismes et évènements qui contribuent significativement aux flux transversaux de quantité de mouvement et de chaleur. Ces différentes contributions sont différenciées et quantifiées par une analyse en quadrants qui fait ressortir la prépondérance des mouvements d'entraînement et d'éjection. On examine enfin les statistiques en deux points associées aux incréments de vitesse et de température. Le comportement de ces incréments est étudié à travers leurs densités de probabilité et leurs coefficients de dissymétrie et d'aplatissement. Les exposants des fonctions de structure confirment l'intermittence plus grande de la température par rapport à celle de la vitesse. Les différents termes des équations de Kolmogorov et de Yaglom sont mesurés. L'équilibre de ces bilans par échelle permet de quantifier le terme qui intègre les différents forçages proposés dans la littérature. / The turbulent mixing is studied in a plane mixing layer for a range of initial conditions applied in terms of velocity and temperature gradients between the two parallel inlet flows. A particular attention is paid to the effect of buoyancy forces, especially in the difference between the so-called stable and unstable configurations, in relation to the sign of the vertical temperature gradient applied. In this study, the novel experimental technique called PCTA, for Parameterizable Constant Temperature Anemometry, is used to enable the analysis of correlations between the velocity and temperature fluctuations. In a preliminary work, the PCTA technique, based on the implementation of repetitive multiple-overheat patterns to a hot wire, is extended and adapted for the instantaneous measurement of temperature and two components of velocity with X-wire probes. In a first stage, one point statistics are analysed. They provide a description of the flow features in the similarity region, where the balance equations for turbulent kinetic energy, temperature variance and the momentum and heat fluxes are established. Considering the low Richardson numbers at stake (Rif <0.03), the buoyancy forces appear logically to be quantitatively negligible compared to the main driving forces, but such a low energy forcing mechanism is in fact sufficient, in unstable configuration, to significantly increase the shear stress and the expansion rate of the mixing layer, both phenomena being associated to an enhanced production of turbulence. In a second stage, a joint probability density function analysis highlights the mechanisms and events that significantly contribute to the transverse momentum and heat fluxes. These contributions are differentiated and quantified through a quadrant analysis which emphasizes the dominance of the local movements of entrainment and ejection associated to the Kelvin-Helmholtz structures. Finally, the study focuses on the two points statistics associated with velocity and temperature increments. The behaviour of these increments is studied through their probability densities, examined along with the skewness and kurtosis coefficients. The structure function exponents confirm the stronger intermittency of temperature compared to that of the velocity. The different terms of the Kolmogorov and Yaglom equations are estimated. The balance of these scale budgets allows the quantification of the forcing term that has been introduced in the literature.
|
9 |
Vortex in Cell 法による固気二相自由乱流の数値解析 (数値解法と二次元混合層への適用)内山, 知実, UCHIYAMA, Tomomi, 成瀬, 正章, NARUSE, Masaaki 10 1900 (has links)
No description available.
|
10 |
渦法による固気二相自由乱流の数値解法 (数値モデルと二次元混合層への適用)内山, 知実, UCHIYAMA, Tomomi, 成瀬, 正章, NARUSE, Masaaki, 峯村, 吉泰, MINEMURA, Kiyoshi 11 1900 (has links)
No description available.
|
Page generated in 0.0545 seconds