Spelling suggestions: "subject:"cortex.une""
1 |
Comparison of Two Vortex-in-cell Schemes Implemented to a Three-dimensional Temporal Mixing LayerSadek, Nabel 24 August 2012 (has links)
Numerical simulations are presented for three dimensional viscous incompressible free shear flows. The numerical method is based on solving the vorticity equation using Vortex-In-Cell method. In this method, the vorticity field is discretized into a finite set of Lagrangian elements (particles) and the computational domain is covered by Eulerian mesh. Velocity field is computed on the mesh by solving Poisson equation. The solution proceeds in time by advecting the particles with the flow. Second order Adam-Bashford method is used for time integration. Exchange of information between Lagrangian particles and Eulerian grid is carried out using the M’4 interpolation scheme. The classical inviscid scheme is enhanced to account for stretching and viscous effects. For that matter, two schemes are used. The first one used periodic remeshing of the vortex particles along with fourth order finite difference approximation for the partial derivatives of the stretching and viscous terms. In the second scheme, derivatives are approximated by least squares polynomial. The novelty of this work is signified by using the moving least squares technique within the framework of the Vortex-in-Cell method and implementing it to a three dimensional temporal mixing layer. Comparisons of the mean flow and velocity statistics are made with experimental studies. The results confirm the validity of the present schemes. Both schemes also demonstrate capability to qualitatively capture significant flow scales, and allow gaining physical insight as to the development of instabilities and the formation of three dimensional vortex structures. The two schemes show acceptable low numerical diffusion as well.
|
2 |
Comparison of Two Vortex-in-cell Schemes Implemented to a Three-dimensional Temporal Mixing LayerSadek, Nabel 24 August 2012 (has links)
Numerical simulations are presented for three dimensional viscous incompressible free shear flows. The numerical method is based on solving the vorticity equation using Vortex-In-Cell method. In this method, the vorticity field is discretized into a finite set of Lagrangian elements (particles) and the computational domain is covered by Eulerian mesh. Velocity field is computed on the mesh by solving Poisson equation. The solution proceeds in time by advecting the particles with the flow. Second order Adam-Bashford method is used for time integration. Exchange of information between Lagrangian particles and Eulerian grid is carried out using the M’4 interpolation scheme. The classical inviscid scheme is enhanced to account for stretching and viscous effects. For that matter, two schemes are used. The first one used periodic remeshing of the vortex particles along with fourth order finite difference approximation for the partial derivatives of the stretching and viscous terms. In the second scheme, derivatives are approximated by least squares polynomial. The novelty of this work is signified by using the moving least squares technique within the framework of the Vortex-in-Cell method and implementing it to a three dimensional temporal mixing layer. Comparisons of the mean flow and velocity statistics are made with experimental studies. The results confirm the validity of the present schemes. Both schemes also demonstrate capability to qualitatively capture significant flow scales, and allow gaining physical insight as to the development of instabilities and the formation of three dimensional vortex structures. The two schemes show acceptable low numerical diffusion as well.
|
3 |
Comparison of Two Vortex-in-cell Schemes Implemented to a Three-dimensional Temporal Mixing LayerSadek, Nabel January 2012 (has links)
Numerical simulations are presented for three dimensional viscous incompressible free shear flows. The numerical method is based on solving the vorticity equation using Vortex-In-Cell method. In this method, the vorticity field is discretized into a finite set of Lagrangian elements (particles) and the computational domain is covered by Eulerian mesh. Velocity field is computed on the mesh by solving Poisson equation. The solution proceeds in time by advecting the particles with the flow. Second order Adam-Bashford method is used for time integration. Exchange of information between Lagrangian particles and Eulerian grid is carried out using the M’4 interpolation scheme. The classical inviscid scheme is enhanced to account for stretching and viscous effects. For that matter, two schemes are used. The first one used periodic remeshing of the vortex particles along with fourth order finite difference approximation for the partial derivatives of the stretching and viscous terms. In the second scheme, derivatives are approximated by least squares polynomial. The novelty of this work is signified by using the moving least squares technique within the framework of the Vortex-in-Cell method and implementing it to a three dimensional temporal mixing layer. Comparisons of the mean flow and velocity statistics are made with experimental studies. The results confirm the validity of the present schemes. Both schemes also demonstrate capability to qualitatively capture significant flow scales, and allow gaining physical insight as to the development of instabilities and the formation of three dimensional vortex structures. The two schemes show acceptable low numerical diffusion as well.
|
4 |
Vortex in Cell 法による固気二相自由乱流の数値解析 (数値解法と二次元混合層への適用)内山, 知実, UCHIYAMA, Tomomi, 成瀬, 正章, NARUSE, Masaaki 10 1900 (has links)
No description available.
|
5 |
Contribution à l'analyse numérique des méthodes de couplage particules-grille en mécanique des fluidesKong, Jian Xin 07 October 1993 (has links) (PDF)
Ce travail concerne l'étude numérique des méthodes du couplage particules-grille (ou appelée methode de vortex in cell) en écoulements bidimensionnels de fluides incompressibles, tant parfait que peu visqueux. Dans la première partie de ce travail on s'intéresse a la resolution numérique des équations d'Euler incompressibles par des méthodes de vortex in cell (vic). On propose une technique itérative pour en améliorer la précision et on montre sur des cas tests l'efficacité de ces techniques. Dans la seconde partie, on montre la convergence pour les équations de navier-stokes d'une methode de vortex utilisant la diffusion numérique produite par la reinitialisation des particules pour simuler la diffusion physique. On définit un schéma vic base sur les techniques de la première partie et on l'utilise pour la simulation de turbulence bidimensionnelle périodique. On obtient les premiers résultats satisfaisants par methode de vortex in cell pour ce cas test difficile
|
6 |
Couplage de méthodes numériques en simulation directe d'écoulements incompressiblesOuld Salihi, Mohamed Lemine 23 October 1998 (has links) (PDF)
Ce travail est consacré au développement des méthodes lagrangiennes comme alternatives ou compléments aux méthodes euleriennes conventionnelles pour la simulation d'écoulements incompressibles en présence d'obstacles. On s'intéresse en particulier à des techniques ou des solveurs eulériens et lagrangiens cohabitent dans le même domaine de calcul mais traitent différents termes des équations de Navier-Stokes, ainsi qu'à des techniques de décomposition de domaines ou différents solveurs sont utilisés dans chaques sous-domaines. Lorsque les méthodes euleriennes et lagrangiennes cohabitent dans le même domaine de calcul (méthode V.I.C.), les formules de passage particules-grilles permettent de représenter la vorticité avec la même précision sur une grille fixe et sur la grille lagrangienne. Les méthodes V.I.C. ainsi obtenues combinent stabilité et précision et fournissent une alternative avantageuse aux méthodes différences-finies pour des écoulements confinés. Lorsque le domaine de calcul est décomposé en sous-domaines distincts traités par méthodes lagrangiennes et par méthodes euleriennes, l'interpolation d'ordre élevé permet de réaliser des conditions d'interface consistantes entre les différents sous-domaines. On dispose alors de méthodes de calcul avec décomposition en sous-domaines, de type Euler/Lagrange ou Lagrange/Lagrange, et résolution en formulation (vitesse-tourbillon)/(vitesse-tourbillon) ou (vitesse-pression)/(vitesse-tourbillon). Les différentes méthodes développées ici sont testées sur plusieurs types d'écoulements (cavité entrainée, rebond de dipôles de vorticité, écoulements dans une conduite et sur une marche, écoulements autour d'obstacles) et comparées à des méthodes de différences-finies d'ordre élevé.
|
Page generated in 0.0348 seconds