• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 183
  • 100
  • 18
  • 12
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 378
  • 378
  • 111
  • 100
  • 92
  • 87
  • 80
  • 69
  • 61
  • 47
  • 46
  • 44
  • 42
  • 40
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Active acceleration compensation for transport of delicate objects

Decker, Michael Wilhelm 08 1900 (has links)
No description available.
92

Planning, localization, and mapping for a mobile robot in a camera network

Meger, David Paul. January 2007 (has links)
Networks of cameras such as building security systems can be a source of localization information for a mobile robot assuming a map of camera locations as well as calibration information for each camera is available. This thesis describes an automated system to acquire such information. A fully automated camera calibration system uses fiducial markers and a mobile robot in order to drastically improve ease-of-use compared to standard techniques. A 6DOF EKF is used for mapping and is validated experimentally over a 50 m hallway environment. Motion planning strategies are considered both in front of a single camera to maximize calibration accuracy and globally between cameras in order to facilitate accurate measurements. For global motion planning, an adaptive exploration strategy based on heuristic search allows compromise between distance traveled and final map uncertainty which provides the system a level of autonomy which could not be obtained with previous techniques.
93

Modelling and control of unmanned ground vehicles.

Tran, Thanh Hung January 2007 (has links)
University of Technology, Sydney. Faculty of Engineering. / The thesis focuses on issues of vehicle modelling incorporating wheel-terrain interaction and low-level control design taking into account uncertainties and input time delay. Addressing these issues is of significant importance in achieving persistent autonomy for outdoor UGVs, especially when navigating on unprepared terrains. The test-bed vehicle used for this research is retrofitted from an all-terrain 20-hp, 0.5-tonne vehicle. Its driveline system consists of an internal combustion engine, continuous variable transmission (CVT), gearbox, differential, chains, and eight wheels. The vehicle is driven in the skid-steering mode, which is popular for many off-road land-vehicle platforms. In this thesis, a comprehensive approach is proposed for modelling the driveline. The approach considers the difference in speed between two outputs of the differential and the turning mechanism of the vehicle. It describes dynamics of all components in the vehicle driveline in an integrated manner with the vehicle motion. Given a pattern of the throttle position, left and right braking efforts as the inputs, the dynamic behaviour of the wheels and other components of the UGV can be predicted. For controlling the vehicle at the low level, PID controllers are firstly used for all actuators. As many components of the vehicle exhibit nonlinearities and time delay, the large overshoots encountered in the outputs can lead to undesirable vehicle behaviours. To alleviate the problem, a novel control approach is proposed for suppression of overshoots resulting from PID control. Sliding mode control (SMC) is employed, for this, with time delay compensated by using an output predictor. As a result, the proposed approach can improve significantly system robustness and reduce substantially step response overshoot. Notably, the design is generic in that it can be applied for many dynamic processes. Knowledge of the interaction between the UGV and the terrain plays an important role in increasing its autonomy and securing the safety for off-road locomotion. In this regard, vehicle kinematic equations are combined with the theory of terramechanics for dynamic modelling of the interaction between the vehicle wheels and a variety of terrain types. Also, a fast algorithm is developed to enable online implementation. The novel interaction model takes into account the relationship between normal stresses, shear stresses, and shear displacement of the terrain that is in contact with the wheels in deriving the three-dimensional reaction forces. Finally, all modelling and control algorithms are integrated into a unique simulator for emulating the vehicle mobility characteristics. In particular, the wheel’s slip and rolling resistance can also be derived to provide useful information for closed-loop control when the UGV is navigating in an unknown environment. The simulator, as a tool for analysing the vehicle mobility, is helpful for further research on relevant topics such as traction control, safe and effective locomotion.
94

Vision-based navigation and decentralized control of mobile robots.

Low, May Peng Emily, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2007 (has links)
The first part of this thesis documents experimental investigation into the use of vision for wheeled robot navigation problems. Specifically, using a video camera as a source of feedback to control a wheeled robot toward a static and a moving object in an environment in real-time. The wheeled robot control algorithms are dependent on information from a vision system and an estimator. The vision system design consists of a pan video camera and a visual gaze algorithm which attempts to search and continuously maintain an object of interest within limited camera field of view. Several vision-based algorithms are presented to recognize simple objects of interest in an environment and to calculate relevant parameters required by the control algorithms. An estimator is designed for state estimation of the motion of an object using visual measurements. The estimator uses noisy measurements of relative bearing to an object and object's size on an image plane formed by perspective projection. These measurements can be obtained from the vision system. A set of algorithms have been designed and experimentally investigated using a pan video camera and two wheeled robots in real-time in a laboratory setting. Experimental results and discussion are presented on the performance of the vision-based control algorithms where a wheeled robot successfully approached an object in various motions. The second part of this thesis investigates the coordination problem of flocking in multi-robot system using concepts from graph theory. New control laws are presented for flocking motion of groups of mobile robots based on several leaders. Simulation results are provided to illustrate the control laws and its applications.
95

A comparison of binaural ultrasonic sensing systems

Stanley, Benjamin David. January 2003 (has links)
Thesis (Ph.D.)--University of Wollongong, 2003. / Typescript. Bibliographical references: leaf 461-470.
96

A monocular color vision system for road intersection detection /

Kurdziel, Michael Scott. January 2008 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2008. / Typescript. Includes bibliographical references (leaves 84-87).
97

An intelligent predictive control approach to the high-speed cross-country autonomous navigation problem /

Kelly, Alonzo. January 1900 (has links)
Thesis (Ph. D.)--Carnegie Mellon University, 1995. / "September 29, 1995." Includes bibliographical references and index.
98

Robust real-time perception for mobile robots /

Kwok, Chung Tin. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (p. 188-204).
99

Control of reconfigurability and navigation of a wheel-legged robot based on active vision

Brooks, Douglas Antwonne. January 2008 (has links)
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Howard, Ayanna; Committee Member: Egerstedt, Magnus; Committee Member: Vela, Patricio. Part of the SMARTech Electronic Thesis and Dissertation Collection.
100

Testability of a swarm robot using a system of systems approach and discrete event simulation /

Hosking, Matthew R. January 2009 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (leaves 91-97).

Page generated in 0.025 seconds