• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 229
  • 42
  • 23
  • 16
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 412
  • 412
  • 412
  • 132
  • 72
  • 71
  • 67
  • 66
  • 51
  • 45
  • 45
  • 43
  • 42
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Algorithmically induced architectures for multi-agent system

Ramachandran, Thiagarajan 27 May 2016 (has links)
The objective of this thesis is to understand the interactions between the computational mechanisms, described by algorithms and software, and the physical world, described by differential equations, in the context of networked systems. Such systems can be denoted as cyber-physical nodes connected over a network. In this work, the power grid is used as a guiding example and a rich source of problems which can be generalized to networked cyber-physical systems. We address specific problems that arise in cyber-physical networks due to the presence of a computational network and a physical network as well as provide directions for future research.
12

Modelling and Model Based Control Design For Rotorcraft Unmanned Aerial Vehicle

Choi, Rejina Ling Wei January 2014 (has links)
Designing high performance control of rotorcraft unmanned aerial vehicle (UAV) requires a mathematical model that describes the dynamics of the vehicle. The model is derived from first principle modelling, such as rigid-body dynamics, actuator dynamics and etc. It is found that simplified decoupled model of RUAV has slightly better data fitting compared with the complex model for helicopter attitude dynamics in hover or near hover flight condition. In addition, the simplified modelling approach has made the analysis of system dynamics easy. System identification method is applied to identify the unknown intrinsic parameters in the nominal model, where manual piloted flight experiment is carried out and input-output data about a nominal operating region is recorded for parameters identification process. Integral-based parameter identification algorithm is then used to identify model parameters that give the best matching between the simulation and measured output response. The results obtained show that the dominant dynamics is captured. The advantages of using integral-based method include the fast computation time, insensitive to initial parameter value and fast convergence rate in comparison with other contemporary system identification methods such as prediction error method (PEM), maximum likelihood method, equation error method and output error method. Besides, the integral-based parameter identification method can be readily extended to tackle slow time-varying model parameters and fast varying disturbances. The model prediction is found to be improved significantly when the iterative integral-based parameter identification is employed and thus further validates the minimal modelling approach. From the literature review, many control schemes have been designed and validated in simulation. However, few of them has really been implemented in real flight as well as under windy and severe conditions, where unpredictable large system parameters variations and unexpected disturbances are present. Therefore, the emphasis on this part will be on the control design that would have satisfactory reference sequence tracking or regulation capability in the presence of unmodelled dynamics and external disturbances. Generalised Predictive Controller (GPC) is particularly considered as the helicopter attitude dynamics control due to its insensitivity with respect to model mismatch and its capability to address the control problem of nominal model with deadtime. The robustness analysis shows that the robustness of the basic GPC is significantly improved using the Smith Predictor (SP) in place of optimal predictor in basic GPC. The effectiveness of the proposed robust GPC was well proven with the control of helicopter heading on the test rig in terms of the reference sequence tracking performance and the input disturbance rejection capability. The second motivation is the investigation of adaptive GPC from the perspective of performance improvements for the robust GPC. The promising experimental results prove the feasibility of the adaptive GPC controller, and especially evident when the underlying robust GPC is tuned with low robustness and legitimates the use of simplified model. Another approach of robust model predictive control is considered where disturbance is identified in real‐time using an iterative integral‐based method.
13

Stochastic model predictive control

Ng, Desmond Han Tien January 2011 (has links)
The work in this thesis focuses on the development of a Stochastic Model Predictive Control (SMPC) algorithm for linear systems with additive and multiplicative stochastic uncertainty subjected to linear input/state constraints. Constraints can be in the form of hard constraints, which must be satisfied at all times, or soft constraints, which can be violated up to a pre-defined limit on the frequency of violation or the expected number of violations in a given period. When constraints are included in the SMPC algorithm, the difficulty arising from stochastic model parameters manifests itself in the online optimization in two ways. Namely, the difficulty lies in predicting the probability distribution of future states and imposing constraints on closed loop responses through constraints on predictions. This problem is overcome through the introduction of layered tubes around a centre trajectory. These tubes are optimized online in order to produce a systematic and less conservative approach of handling constraints. The layered tubes centered around a nominal trajectory achieve soft constraint satisfaction through the imposition of constraints on the probabilities of one-step-ahead transition of the predicted state between the layered tubes and constraints on the probability of one-step-ahead constraint violations. An application in the field of Sustainable Development policy is used as an example. With some adaptation, the algorithm is extended the case where the uncertainty is not identically and independently distributed. Also, by including linearization errors, it is extended to non-linear systems with additive uncertainty.
14

Networked Model Predictive Control for Satellite Formation Flying

Catanoso, Damiana January 2019 (has links)
A novel continuous low-thrust fuel-efficient model predictive control strategy for multi-satellite formations flying in low earth orbit is presented. State prediction relies on a full nonlinear relative motion model, based on quasi-nonsingular relative orbital elements, including earth oblateness effects and, through state augmentation, differential drag. The optimal control problem is specically designed to incorporate latest theoretical results concerning maneuver optimality in the state-space, yielding to a sensible total delta-V reduction, while assuring feasibility and stability though imposition of a Lyapunov constraint. The controller is particularly suitable for networked architectures since it exploits the predictive strategy and the dynamics knowledge to provide robustness against feedback losses and delays. The Networked MPC is validated through real missions simulation scenarios using a high-fidelity orbital propagator which accounts for high-order geopotential, solar radiation pressure, atmospheric drag and third-body effects.
15

Model Predictive Linear Control with Successive Linearization

Friedbaum, Jesse Robert 01 August 2018 (has links)
Robots have been a revolutionizing force in manufacturing in the 20th and 21st century but have proven too dangerous around humans to be used in many other fields including medicine. We describe a new control algorithm for robots developed by the Brigham Young University Robotics and Dynamics and Robotics Laboratory that has shown potential to make robots less dangerous to humans and suitable to work in more applications. We analyze the computational complexity of this algorithm and find that it could be a feasible control for even the most complicated robots. We also show conditions for a system which guarantee local stability for this control algorithm.
16

Robust Empirical Model-Based Algorithms for Nonlinear Processes

Diaz Mendoza, Juan Rosendo January 2010 (has links)
This research work proposes two robust empirical model-based predictive control algorithms for nonlinear processes. Chemical process are generally highly nonlinear thus predictive control algorithms that explicitly account for the nonlinearity of the process are expected to provide better closed-loop performance as compared to algorithms based on linear models. Two types of models can be considered for control: first-principles and empirical. Empirical models were chosen for the proposed algorithms for the following reasons: (i) they are less complex for on-line optimization, (ii) they are easy to identify from input-output data and (iii) their structure is suitable for the formulation of robustness tests. One of the key problems of every model that is used for prediction within a control strategy is that some model parameters cannot be known accurately due to measurement noise and/or error in the structure of the assumed model. In the robust control approach it is assumed that processes can be represented by models with parameters' values that are assumed to lie between a lower and upper bound or equivalently, that these parameters can be represented by a nominal value plus uncertainty. When this uncertainty in control parameters is not considered by the controller the control actions might be insufficient to effectively control the process and in some extreme cases the closed-loop may become unstable. Accordingly, the two robust control algorithms proposed in the current work explicitly account for the effect of uncertainty on stability and closed-loop performance. The first proposed controller is a robust gain-scheduling model predictive controller (MPC). In this case the process is represented within each operating region by a state-affine model obtained from input-output data. The state-affine model matrices are used to obtain a state-space based MPC for every operating region. By combining the state-affine, disturbance and controller equations a closed-loop representation was obtained. Then, the resulting mathematical representation was tested for robustness with linear matrix inequalities (LMI's) based on a test where the vertices of the parameter box were obtained by an iterative procedure. The result of the LMI's test gives a measure of performance referred to as γ that relates the effect of the disturbances on the process outputs. Finally, for the gain-scheduling part of the algorithm a set of rules was proposed to switch between the available controllers according to the current process conditions. Since every combination of the controller tuning parameters results in a different value of γ, an optimization problem was proposed to minimize γ with respect to the tuning parameters. Accordingly, for the proposed controller it was ensured that the effect of the disturbances on the output variables was kept to its minimum. A bioreactor case study was presented to show the benefits of the proposed algorithm. For comparison purposes a non-robust linear MPC was also designed. The results show that the proposed algorithm has a clear advantage in terms of performance as compared to non-robust linear MPC techniques. The second controller proposed in this work is a robust nonlinear model predictive controller (NMPC) based on an empirical Volterra series model. The benefit of using a Volterra series model for this case is that its structure can be split in two sections that account for the nominal and uncertain parameter values. Similar to the previously proposed gain-scheduled controller the model parameters were obtained from input-output data. After identifying the Volterra model, an interconnection matrix and its corresponding uncertainty description were found. The interconnection matrix relates the process inputs and outputs and is built according to the type of cost function that the controller uses. Based on the interconnection representing the system a robustness test was proposed based on a structured singular value norm calculation (SSV). The test is based on a min-max formulation where the worst possible closed-loop error is minimized with respect to the manipulated variables. Additional factors that were considered in the cost function were: manipulated variables weighting, manipulated variables restrictions and a terminal condition. To show the benefits of this controller two case studies were considered, a single-input-single-output (SISO) and a multiple-input-multiple-output (MIMO) process. Both case studies show that the proposed controller is able to control the process. The results showed that the controller could efficiently track set-points in the presence of disturbances while complying with the saturation limits imposed on the manipulated variables. This controller was also compared against a non-robust linear MPC, non-robust NMPC and non-robust first-principles NMPC. These comparisons were performed for different levels of uncertainty and for different values of the suppression or control actions weights. It was shown through these comparisons that a tradeoff exists between nominal performance and robustness to model error. Thus, for larger weights the controller is less aggressive resulting in more sluggish performance but less sensitivity to model error thus resulting in smaller differences between the robust and non-robust schemes. On the other hand when these weights are smaller the controller is more aggressive resulting in better performance at the nominal operating conditions but also leading to larger sensitivity to model error when the system is operated away from nominal conditions. In this case, as a result of this increased sensitivity to model error, the robust controller is found to be significantly better than the non-robust one.
17

Robust Distributed Model Predictive Control Strategies of Chemical Processes

Al-Gherwi, Walid January 2010 (has links)
This work focuses on the robustness issues related to distributed model predictive control (DMPC) strategies in the presence of model uncertainty. The robustness of DMPC with respect to model uncertainty has been identified by researchers as a key factor in the successful application of DMPC. A first task towards the formulation of robust DMPC strategy was to propose a new systematic methodology for the selection of a control structure in the context of DMPC. The methodology is based on the trade-off between performance and simplicity of structure (e.g., a centralized versus decentralized structure) and is formulated as a multi-objective mixed-integer nonlinear program (MINLP). The multi-objective function is composed of the contribution of two indices: 1) closed-loop performance index computed as an upper bound on the variability of the closed-loop system due to the effect on the output error of either set-point or disturbance input, and 2) a connectivity index used as a measure of the simplicity of the control structure. The parametric uncertainty in the models of the process is also considered in the methodology and it is described by a polytopic representation whereby the actual process’s states are assumed to evolve within a polytope whose vertices are defined by linear models that can be obtained from either linearizing a nonlinear model or from their identification in the neighborhood of different operating conditions. The system’s closed-loop performance and stability are formulated as Linear Matrix Inequalities (LMI) problems so that efficient interior-point methods can be exploited. To solve the MINLP a multi-start approach is adopted in which many starting points are generated in an attempt to obtain global optima. The efficiency of the proposed methodology is shown through its application to benchmark simulation examples. The simulation results are consistent with the conclusions obtained from the analysis. The proposed methodology can be applied at the design stage to select the best control configuration in the presence of model errors. A second goal accomplished in this research was the development of a novel online algorithm for robust DMPC that explicitly accounts for parametric uncertainty in the model. This algorithm requires the decomposition of the entire system’s model into N subsystems and the solution of N convex corresponding optimization problems in parallel. The objective of this parallel optimizations is to minimize an upper bound on a robust performance objective by using a time-varying state-feedback controller for each subsystem. Model uncertainty is explicitly considered through the use of polytopic description of the model. The algorithm employs an LMI approach, in which the solutions are convex and obtained in polynomial time. An observer is designed and embedded within each controller to perform state estimations and the stability of the observer integrated with the controller is tested online via LMI conditions. An iterative design method is also proposed for computing the observer gain. This algorithm has many practical advantages, the first of which is the fact that it can be implemented in real-time control applications and thus has the benefit of enabling the use of a decentralized structure while maintaining overall stability and improving the performance of the system. It has been shown that the proposed algorithm can achieve the theoretical performance of centralized control. Furthermore, the proposed algorithm can be formulated using a variety of objectives, such as Nash equilibrium, involving interacting processing units with local objective functions or fully decentralized control in the case of communication failure. Such cases are commonly encountered in the process industry. Simulations examples are considered to illustrate the application of the proposed method. Finally, a third goal was the formulation of a new algorithm to improve the online computational efficiency of DMPC algorithms. The closed-loop dual-mode paradigm was employed in order to perform most of the heavy computations offline using convex optimization to enlarge invariant sets thus rendering the iterative online solution more efficient. The solution requires the satisfaction of only relatively simple constraints and the solution of problems each involving a small number of decision variables. The algorithm requires solving N convex LMI problems in parallel when cooperative scheme is implemented. The option of using Nash scheme formulation is also available for this algorithm. A relaxation method was incorporated with the algorithm to satisfy initial feasibility by introducing slack variables that converge to zero quickly after a small number of early iterations. Simulation case studies have illustrated the applicability of this approach and have demonstrated that significant improvement can be achieved with respect to computation times. Extensions of the current work in the future should address issues of communication loss, delays and actuator failure and their impact on the robustness of DMPC algorithms. In addition, integration of the proposed DMPC algorithms with other layers in automation hierarchy can be an interesting topic for future work.
18

Modeling and control of a continuous crystallization process using neural networks and model predictive control

Ashobi, Mohammad 01 January 1996 (has links)
Continuous crystallizers are distributed dynamical systems. Physical modeling of these systems using basic principles results in partial and integro-differential equations. To exploit the physical models, in the analysis of the system behavior and the design of an appropriate controller, requires complicated measurement techniques especially in the spatial domain (crystal size distribution or crystal population density). Therefore, obtaining a lumped model structure is desirable. The lumped model of a continuous crystallizer can be obtained either from the physical model, using conventional techniques such as the discretization or function separation methods, or from input and output measurements using system identification approaches. Studies of the crystallization process have indicated that in order to improve the control performance, expressing the process dynamics using single-input, single-output models is insufficient. The aim of this thesis was to investigate the process behavior in a multivariable framework. In this regard, the dynamics of a continuous cooling KCl crystallizer were identified using three-input, three-output linear and nonlinear model structures. The autoregressive exogenous model structures were employed in linear modeling of the process. The nonlinear modeling was performed using several architectures of feedforward and recurrent neural networks. Simulation results demonstrated that the linear modeling, using a single model for the entire dynamics, is not adequate. Either multi-model or nonlinear modeling is recommended. The performance of different neural network structures in the nonlinear modeling of the process was illustrated and, based on the results, some comparisons were made between these networks. The next step in the study of the crystallization process as a multivariable system was to design and apply a multivariable control scheme. Simulation results from the modeling of the process indicated that strong interactions are present among different loops of the system. The process is nonlinear and some of the outputs exhibit inverse or non-minimum-phase responses. The model predictive control strategy is known to perform well in the control of the systems with the behaviors found in the crystallization process. To ensure a feasible solution, the feasible sequential quadratic optimization algorithm was successfully exploited in a model predictive controller. Computer simulations of the controller were performed in order to demonstrate control of the crystal size distribution, crystal purity, and production rate. The effects of different control parameters were illustrated using the simulation results. A brief discussion on how to select these parameters was also provided. Robustness of the model predictive controller was studied in the presence of mismatch between the model and the process.
19

Robust Empirical Model-Based Algorithms for Nonlinear Processes

Diaz Mendoza, Juan Rosendo January 2010 (has links)
This research work proposes two robust empirical model-based predictive control algorithms for nonlinear processes. Chemical process are generally highly nonlinear thus predictive control algorithms that explicitly account for the nonlinearity of the process are expected to provide better closed-loop performance as compared to algorithms based on linear models. Two types of models can be considered for control: first-principles and empirical. Empirical models were chosen for the proposed algorithms for the following reasons: (i) they are less complex for on-line optimization, (ii) they are easy to identify from input-output data and (iii) their structure is suitable for the formulation of robustness tests. One of the key problems of every model that is used for prediction within a control strategy is that some model parameters cannot be known accurately due to measurement noise and/or error in the structure of the assumed model. In the robust control approach it is assumed that processes can be represented by models with parameters' values that are assumed to lie between a lower and upper bound or equivalently, that these parameters can be represented by a nominal value plus uncertainty. When this uncertainty in control parameters is not considered by the controller the control actions might be insufficient to effectively control the process and in some extreme cases the closed-loop may become unstable. Accordingly, the two robust control algorithms proposed in the current work explicitly account for the effect of uncertainty on stability and closed-loop performance. The first proposed controller is a robust gain-scheduling model predictive controller (MPC). In this case the process is represented within each operating region by a state-affine model obtained from input-output data. The state-affine model matrices are used to obtain a state-space based MPC for every operating region. By combining the state-affine, disturbance and controller equations a closed-loop representation was obtained. Then, the resulting mathematical representation was tested for robustness with linear matrix inequalities (LMI's) based on a test where the vertices of the parameter box were obtained by an iterative procedure. The result of the LMI's test gives a measure of performance referred to as γ that relates the effect of the disturbances on the process outputs. Finally, for the gain-scheduling part of the algorithm a set of rules was proposed to switch between the available controllers according to the current process conditions. Since every combination of the controller tuning parameters results in a different value of γ, an optimization problem was proposed to minimize γ with respect to the tuning parameters. Accordingly, for the proposed controller it was ensured that the effect of the disturbances on the output variables was kept to its minimum. A bioreactor case study was presented to show the benefits of the proposed algorithm. For comparison purposes a non-robust linear MPC was also designed. The results show that the proposed algorithm has a clear advantage in terms of performance as compared to non-robust linear MPC techniques. The second controller proposed in this work is a robust nonlinear model predictive controller (NMPC) based on an empirical Volterra series model. The benefit of using a Volterra series model for this case is that its structure can be split in two sections that account for the nominal and uncertain parameter values. Similar to the previously proposed gain-scheduled controller the model parameters were obtained from input-output data. After identifying the Volterra model, an interconnection matrix and its corresponding uncertainty description were found. The interconnection matrix relates the process inputs and outputs and is built according to the type of cost function that the controller uses. Based on the interconnection representing the system a robustness test was proposed based on a structured singular value norm calculation (SSV). The test is based on a min-max formulation where the worst possible closed-loop error is minimized with respect to the manipulated variables. Additional factors that were considered in the cost function were: manipulated variables weighting, manipulated variables restrictions and a terminal condition. To show the benefits of this controller two case studies were considered, a single-input-single-output (SISO) and a multiple-input-multiple-output (MIMO) process. Both case studies show that the proposed controller is able to control the process. The results showed that the controller could efficiently track set-points in the presence of disturbances while complying with the saturation limits imposed on the manipulated variables. This controller was also compared against a non-robust linear MPC, non-robust NMPC and non-robust first-principles NMPC. These comparisons were performed for different levels of uncertainty and for different values of the suppression or control actions weights. It was shown through these comparisons that a tradeoff exists between nominal performance and robustness to model error. Thus, for larger weights the controller is less aggressive resulting in more sluggish performance but less sensitivity to model error thus resulting in smaller differences between the robust and non-robust schemes. On the other hand when these weights are smaller the controller is more aggressive resulting in better performance at the nominal operating conditions but also leading to larger sensitivity to model error when the system is operated away from nominal conditions. In this case, as a result of this increased sensitivity to model error, the robust controller is found to be significantly better than the non-robust one.
20

Robust Distributed Model Predictive Control Strategies of Chemical Processes

Al-Gherwi, Walid January 2010 (has links)
This work focuses on the robustness issues related to distributed model predictive control (DMPC) strategies in the presence of model uncertainty. The robustness of DMPC with respect to model uncertainty has been identified by researchers as a key factor in the successful application of DMPC. A first task towards the formulation of robust DMPC strategy was to propose a new systematic methodology for the selection of a control structure in the context of DMPC. The methodology is based on the trade-off between performance and simplicity of structure (e.g., a centralized versus decentralized structure) and is formulated as a multi-objective mixed-integer nonlinear program (MINLP). The multi-objective function is composed of the contribution of two indices: 1) closed-loop performance index computed as an upper bound on the variability of the closed-loop system due to the effect on the output error of either set-point or disturbance input, and 2) a connectivity index used as a measure of the simplicity of the control structure. The parametric uncertainty in the models of the process is also considered in the methodology and it is described by a polytopic representation whereby the actual process’s states are assumed to evolve within a polytope whose vertices are defined by linear models that can be obtained from either linearizing a nonlinear model or from their identification in the neighborhood of different operating conditions. The system’s closed-loop performance and stability are formulated as Linear Matrix Inequalities (LMI) problems so that efficient interior-point methods can be exploited. To solve the MINLP a multi-start approach is adopted in which many starting points are generated in an attempt to obtain global optima. The efficiency of the proposed methodology is shown through its application to benchmark simulation examples. The simulation results are consistent with the conclusions obtained from the analysis. The proposed methodology can be applied at the design stage to select the best control configuration in the presence of model errors. A second goal accomplished in this research was the development of a novel online algorithm for robust DMPC that explicitly accounts for parametric uncertainty in the model. This algorithm requires the decomposition of the entire system’s model into N subsystems and the solution of N convex corresponding optimization problems in parallel. The objective of this parallel optimizations is to minimize an upper bound on a robust performance objective by using a time-varying state-feedback controller for each subsystem. Model uncertainty is explicitly considered through the use of polytopic description of the model. The algorithm employs an LMI approach, in which the solutions are convex and obtained in polynomial time. An observer is designed and embedded within each controller to perform state estimations and the stability of the observer integrated with the controller is tested online via LMI conditions. An iterative design method is also proposed for computing the observer gain. This algorithm has many practical advantages, the first of which is the fact that it can be implemented in real-time control applications and thus has the benefit of enabling the use of a decentralized structure while maintaining overall stability and improving the performance of the system. It has been shown that the proposed algorithm can achieve the theoretical performance of centralized control. Furthermore, the proposed algorithm can be formulated using a variety of objectives, such as Nash equilibrium, involving interacting processing units with local objective functions or fully decentralized control in the case of communication failure. Such cases are commonly encountered in the process industry. Simulations examples are considered to illustrate the application of the proposed method. Finally, a third goal was the formulation of a new algorithm to improve the online computational efficiency of DMPC algorithms. The closed-loop dual-mode paradigm was employed in order to perform most of the heavy computations offline using convex optimization to enlarge invariant sets thus rendering the iterative online solution more efficient. The solution requires the satisfaction of only relatively simple constraints and the solution of problems each involving a small number of decision variables. The algorithm requires solving N convex LMI problems in parallel when cooperative scheme is implemented. The option of using Nash scheme formulation is also available for this algorithm. A relaxation method was incorporated with the algorithm to satisfy initial feasibility by introducing slack variables that converge to zero quickly after a small number of early iterations. Simulation case studies have illustrated the applicability of this approach and have demonstrated that significant improvement can be achieved with respect to computation times. Extensions of the current work in the future should address issues of communication loss, delays and actuator failure and their impact on the robustness of DMPC algorithms. In addition, integration of the proposed DMPC algorithms with other layers in automation hierarchy can be an interesting topic for future work.

Page generated in 0.0425 seconds