Spelling suggestions: "subject:"[een] MULTI-AGENT SYSTEMS"" "subject:"[enn] MULTI-AGENT SYSTEMS""
171 |
Learning Based Methods for Resilient and Enhanced Operation of IntelligentTransportation SystemsKhanapuri, Eshaan January 2022 (has links)
No description available.
|
172 |
Exploring Agent-Based Simulation of Causal Maps: Toward a Strategic Decision Support ToolDruckenmiller, Douglas Allen 31 March 2005 (has links)
No description available.
|
173 |
Real-time Monitoring and Estimation of Spatio-Temporal Processes Using Co-operative Multi-Agent Systems for Improved Situational AwarenessSharma, Balaji R. January 2013 (has links)
No description available.
|
174 |
Distributed Decision Tree Induction Using Multi-agent Based Negotiation ProtocolChattopadhyay, Dipayan 10 October 2014 (has links)
No description available.
|
175 |
MANILA: A Multi-Agent Framework for Emergent Associative Learning and Creativity in Social NetworksShekfeh, Marwa January 2017 (has links)
No description available.
|
176 |
Robust, Real Time, and Scalable Multi-Agent Task AllocationKivelevitch, Elad H. 05 October 2012 (has links)
No description available.
|
177 |
Price-Based Distributed Optimization in Large-Scale Networked SystemsHomChaudhuri, Baisravan 12 September 2013 (has links)
No description available.
|
178 |
Robust and Abstraction-free Control of Dynamical Systems under Signal Temporal Logic TasksLindemann, Lars January 2018 (has links)
Dynamical systems that provably satisfy given specifications have become increasingly important in many engineering areas. For instance, safety-critical systems such as human-robot networks or autonomous driving systems are required to be safe and to also satisfy some complex specifications that may include timing constraints, i.e., when or in which order some tasks should be accomplished. Temporal logics have recently proven to be a valuable tool for these control systems by providing a rich specification language. Existing temporal logic-based control approaches discretize the underlying dynamical system in space and/or time, which is commonly referred to as the abstraction process. In other words, the continuous dynamical system is abstracted into a finite system representation, e.g., into a finite state automaton. Such approaches may lead to high computational burdens due to the curse of dimensionality, which makes it hard to use them in practice. Especially with respect to multi-agent systems, these methods do not scale computationally when the number of agents increases. We will address this open research question by deriving abstraction-free control methods for single- and multi-agent systems under signal temporal logic tasks. Another aim of this research is to consider robustness, which is partly taken care of by the robust semantics admitted by signal temporal logic as well as by the robustness properties of the derived control methods. In this work, we propose computationally-efficient frameworks that deal with the aforementioned problems for single- and multi-agent systems by using feedback control strategies such as optimization-based techniques, prescribed performance control, and control barrier functions in combination with hybrid systems theory that allows us to model some higher level decision-making. In each of these approaches, the temporal properties of the employed control methods are used to impose a temporal behavior on the closed-loop system dynamics, which eventually results in the satisfaction of the signal temporal logic task. With respect to the multi-agent case, we consider a bottom-up approach where each agent is subject to a local (individual) task. These tasks may depend on the behavior of other agents. Hence, the multi-agent system is subject to couplings induced on the task level as well as on the dynamical level. The main challenge then is to deal with these couplings and derive control methods that can still satisfy the given tasks or alternatively result in least violating solutions. The efficacy of the theoretical findings is demonstrated in simulations of single- and multi-agent systems under complex specifications. / <p>QC 20180502</p>
|
179 |
A Bayesian Network Approach to the Self-organization and Learning in Intelligent AgentsSahin, Ferat 25 September 2000 (has links)
A Bayesian network approach to self-organization and learning is introduced for use with intelligent agents. Bayesian networks, with the help of influence diagrams, are employed to create a decision-theoretic intelligent agent. Influence diagrams combine both Bayesian networks and utility theory. In this research, an intelligent agent is modeled by its belief, preference, and capabilities attributes. Each agent is assumed to have its own belief about its environment. The belief aspect of the intelligent agent is accomplished by a Bayesian network. The goal of an intelligent agent is said to be the preference of the agent and is represented with a utility function in the decision theoretic intelligent agent. Capabilities are represented with a set of possible actions of the decision-theoretic intelligent agent. Influence diagrams have utility nodes and decision nodes to handle the preference and capabilities of the decision-theoretic intelligent agent, respectively.
Learning is accomplished by Bayesian networks in the decision-theoretic intelligent agent. Bayesian network learning methods are discussed intensively in this paper. Because intelligent agents will explore and learn the environment, the learning algorithm should be implemented online. None of the existent Bayesian network learning algorithms has online learning. Thus, an online Bayesian network learning method is proposed to allow the intelligent agent learn during its exploration.
Self-organization of the intelligent agents is accomplished because each agent models other agents by observing their behavior. Agents have belief, not only about environment, but also about other agents. Therefore, an agent takes its decisions according to the model of the environment and the model of the other agents. Even though each agent acts independently, they take the other agents behaviors into account to make a decision. This permits the agents to organize themselves for a common task.
To test the proposed intelligent agent's learning and self-organizing abilities, Windows application software is written to simulate multi-agent systems. The software, IntelliAgent, lets the user design decision-theoretic intelligent agents both manually and automatically. The software can also be used for knowledge discovery by employing Bayesian network learning a database.
Additionally, we have explored a well-known herding problem to obtain sound results for our intelligent agent design. In the problem, a dog tries to herd a sheep to a certain location, i.e. a pen. The sheep tries to avoid the dog by retreating from the dog. The herding problem is simulated using the IntelliAgent software. Simulations provided good results in terms of the dog's learning ability and its ability to organize its actions according to the sheep's (other agent) behavior.
In summary, a decision-theoretic approach is applied to the self-organization and learning problems in intelligent agents. Software was written to simulate the learning and self-organization abilities of the proposed agent design. A user manual for the software and the simulation results are presented.
This research is supported by the Office of Naval Research with the grant number N00014-98-1-0779. Their financial support is greatly appreciated. / Ph. D.
|
180 |
Case-Based Argumentation in Agent SocietiesHeras Barberá, Stella María 02 November 2011 (has links)
Hoy en día los sistemas informáticos complejos se pueden ven en términos de los servicios que ofrecen y las entidades que interactúan para proporcionar o consumir dichos servicios. Los sistemas multi-agente abiertos, donde los agentes pueden entrar o salir del sistema, interactuar y formar grupos (coaliciones de agentes u organizaciones) de forma dinámica para resolver problemas, han sido propuestos como una tecnología adecuada para implementar este nuevo paradigma informático. Sin embargo, el amplio dinamismo de estos sistemas requiere que los agentes tengan una forma de armonizar los conflictos que surgen cuando tienen que colaborar y coordinar sus actividades. En estas situaciones, los agentes necesitan un mecanismo para argumentar de forma eficiente (persuadir a otros agentes para que acepten sus puntos de vista, negociar los términos de un contrato, etc.) y poder llegar a acuerdos.
La argumentación es un medio natural y efectivo para abordar los conflictos y contradicciones del conocimiento. Participando en diálogos argumentativos, los agentes pueden llegar a acuerdos con otros agentes. En un sistema multi-agente abierto, los agentes pueden formar sociedades que los vinculan a través de relaciones de dependencia. Estas relaciones pueden surgir de sus interacciones o estar predefinidas por el sistema. Además, los agentes pueden tener un conjunto de valores individuales o sociales, heredados de los grupos a los que pertenecen, que quieren promocionar. Las dependencias entre los agentes y los grupos a los que pertenecen y los valores individuales y sociales definen el contexto social del agente. Este contexto tiene una influencia decisiva en la forma en que un agente puede argumentar y llegar a acuerdos con otros agentes. Por tanto, el contexto social de los agentes debería tener una influencia decisiva en la representación computacional de sus argumentos y en el proceso de gestión de argumentos. / Heras Barberá, SM. (2011). Case-Based Argumentation in Agent Societies [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/12497
|
Page generated in 0.0531 seconds