• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1199
  • 349
  • 214
  • 83
  • 65
  • 47
  • 40
  • 33
  • 27
  • 17
  • 13
  • 13
  • 13
  • 11
  • 7
  • Tagged with
  • 2510
  • 2510
  • 811
  • 758
  • 554
  • 533
  • 424
  • 400
  • 370
  • 310
  • 288
  • 271
  • 242
  • 241
  • 236
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Speech features and their significance in speaker recognition

Schuy, Lars January 2002 (has links)
This thesis addresses the significance of speech features within the task of speaker recognition. Motivated by the perception of simple attributes like `loud', `smooth', `fast', more than 70 new speech features are developed. A set of basic speech features like pitch, loudness and speech speed are combined together with these new features in a feature set, one set per utterance. A neural network classifier is used to evaluate the significance of these features by creating a speaker recognition system and analysing the behaviour of successfully trained single-speaker networks. An in-depth analysis of network weights allows a rating of significance and feature contribution. A subjective listening experiment validates and confirms the results of the neural network analysis. The work starts with an extended sentence analysis; ten sentences are uttered by 630 speakers. The extraction of 100 speech features is outlined and a 100-element feature vector for each utterance is derived. Some features themselves and the methods of analysing them have been used elsewhere, for example pitch, sound pressure level, spectral envelope, loudness, speech speed and glottal-to-noise excitation. However, more than 70 of the 100 features are derivatives of these basic features and have not yet been described and used before in the speakerr ecognition research,e speciallyyn ot within a rating of feature significance. These derivatives include histogram, 3`d and 4 moments, function approximation, as well as other statistical analyses applied to the basic features. The first approach assessing the significance of features and their possible use in a recognition system is based on a probability analysis. The analysis is established on the assumption that within the speaker's ten utterances' single feature values have a small deviation and cluster around the mean value of one speaker. The presented features indeed cluster into groups and show significant differences between speakers, thus enabling a clear separation of voices when applied to a small database of < 20 speakers. The recognition and assessment of individual feature contribution jecomes impossible, when the database is extended to 200 speakers. To ensure continous vplidation of feature contribution it is necessary to consider a different type of classifier. These limitations are overcome with the introduction of neural network classifiers. A separate network is assigned to each speaker, resulting in the creation of 630 networks. All networks are of standard feed-forward backpropagation type and have a 100-input, 20- hidden-nodes, one-output architecture. The 6300 available feature vectors are split into a training, validation and test set in the ratio of 5-3-2. The networks are initially trained with the same 100-feature input database. Successful training was achieved within 30 to 100 epochs per network. The speaker related to the network with the highest output is declared as the speaker represented by the input. The achieved recognition rate for 630 speakers is -49%. A subsequent preclusion of features with minor significance raises the recognition rate to 57%. The analysis of the network weight behaviour reveals two major pointsA definite ranking order of significance exists between the 100 features. Many of the newly introduced derivatives of pitch, brightness, spectral voice patterns and speech speed contribute intensely to recognition, whereas feature groups related to glottal-to-noiseexcitation ratio and sound pressure level play a less important role. The significance of features is rated by the training, testing and validation behaviour of the networks under data sets with reduced information content, the post-trained weight distribution and the standard deviation of weight distribution within networks. The findings match with results of a subjective listening experiment. As a second major result the analysis shows that there are large differences between speakers and the significance of features, i. e. not all speakers use the same feature set to the same extent. The speaker-related networks exhibit key features, where they are uniquely identifiable and these key features vary from speaker to speaker. Some features like pitch are used by all networks; other features like sound pressure level and glottal-to-noise excitation ratio are used by only a few distinct classifiers. Again, the findings correspond with results of a subjective listening experiment. This thesis presents more than 70 new features which never have been used before in speaker recognition. A quantitative ranking order of 100 speech features is introduced. Such a ranking order has not been documented elsewhere and is comparatively new to the area of speaker recognition. This ranking order is further extended and describes the amount to which a classifier uses or omits single features, solely depending on the characteristics of the voice sample. Such a separation has not yet been documented and is a novel contribution. The close correspondence of the subjective listening experiment and the findings of the network classifiers show that it is plausible to model the behaviour of human speech recognition with an artificial neural network. Again such a validation is original in the area of speaker recognition
2

Implementation and capabilities of layered feed-forward networks

Richards, Gareth D. January 1990 (has links)
No description available.
3

Style classification of cursive script recognition

Dehkordi, Mandana Ebadian January 2003 (has links)
No description available.
4

A connectionist perspective of rate effects in speech

Abu-Bakar, Mohd Mukhlis January 1994 (has links)
No description available.
5

Dynamic payload estimation in four wheel drive loaders

Hindman, Jahmy J. 22 December 2008
Knowledge of the mass of the manipulated load (i.e. payload) in off-highway machines is useful information for a variety of reasons ranging from knowledge of machine stability to ensuring compliance with transportion regulations. This knowledge is difficult to ascertain however. This dissertation concerns itself with delineating the motivations for, and difficulties in development of a dynamic payload weighing algorithm. The dissertation will describe how the new type of dynamic payload weighing algorithm was developed and progressively overcame some of these difficulties.<p> The payload mass estimate is dependent upon many different variables within the off-highway vehicle. These variables include static variability such as machining tolerances of the revolute joints in the linkage, mass of the linkage members, etc as well as dynamic variability such as whole-machine accelerations, hydraulic cylinder friction, pin joint friction, etc. Some initial effort was undertaken to understand the static variables in this problem first by studying the effects of machining tolerances on the working linkage kinematics in a four-wheel-drive loader. This effort showed that if the linkage members were machined within the tolerances prescribed by the design of the linkage components, the tolerance stack-up of the machining variability had very little impact on overall linkage kinematics.<p> Once some of the static dependent variables were understood in greater detail significant effort was undertaken to understand and compensate for the dynamic dependent variables of the estimation problem. The first algorithm took a simple approach of using the kinematic linkage model coupled with hydraulic cylinder pressure information to calculate a payload estimate directly. This algorithm did not account for many of the aforementioned dynamic variables (joint friction, machine acceleration, etc) but was computationally expedient. This work however produced payload estimates with error far greater than the 1% full scale value being targeted. Since this initial simplistic effort met with failure, a second algorithm was needed. The second algorithm was developed upon the information known about the limitations of the first algorithm. A suitable method of compensating for the non-linear dependent dynamic variables was needed. To address this dilemma, an artificial neural network approach was taken for the second algorithm. The second algorithms construction was to utilise an artificial neural network to capture the kinematic linkage characteristics and all other dynamic dependent variable behaviour and estimate the payload information based upon the linkage position and hydraulic cylinder pressures. This algorithm was trained using emperically collected data and then subjected to actual use in the field. This experiment showed that that the dynamic complexity of the estimation problem was too large for a small (and computationally feasible) artificial neural network to characterize such that the error estimate was less than the 1% full scale requirement.<p> A third algorithm was required due to the failures of the first two. The third algorithm was constructed to ii take advantage of the kinematic model developed and utilise the artificial neural networks ability to perform nonlinear mapping. As such, the third algorithm developed uses the kinematic model output as an input to the artificial neural network. This change from the second algorithm keeps the network from having to characterize the linkage kinematics and only forces the network to compensate for the dependent dynamic variables excluded by the kinematic linkage model. This algorithm showed significant improvement over the previous two but still did not meet the required 1% full scale requirement. The promise shown by this algorithm however was convincing enough that further effort was spent in trying to refine it to improve the accuracy.<p> The fourth algorithm developed proceeded with improving the third algorithm. This was accomplished by adding additional inputs to the artificial neural network that allowed the network to better compensate for the variables present in the problem. This effort produced an algorithm that, when subjected to actual field use, produced results very near the 1% full scale accuracy requirement. This algorithm could be improved upon slightly with better input data filtering and possibly adding additional network inputs.<p> The final algorithm produced results very near the desired accuracy. This algorithm was also novel in that for this estimation, the artificial neural network was not used soley as the means to characterize the problem for estimation purposes. Instead, much of the responsibility for the mathematical characterization of the problem was placed upon a kinematic linkage model that then fed its own payload estimate into the neural network where the estimate was further refined during network training with calibration data and additional inputs. This method of nonlinear state estimation (i.e. utilising a neural network to compensate for nonlinear effects in conjunction with a first principles model) has not been seen previously in the literature.
6

Dynamic payload estimation in four wheel drive loaders

Hindman, Jahmy J. 22 December 2008 (has links)
Knowledge of the mass of the manipulated load (i.e. payload) in off-highway machines is useful information for a variety of reasons ranging from knowledge of machine stability to ensuring compliance with transportion regulations. This knowledge is difficult to ascertain however. This dissertation concerns itself with delineating the motivations for, and difficulties in development of a dynamic payload weighing algorithm. The dissertation will describe how the new type of dynamic payload weighing algorithm was developed and progressively overcame some of these difficulties.<p> The payload mass estimate is dependent upon many different variables within the off-highway vehicle. These variables include static variability such as machining tolerances of the revolute joints in the linkage, mass of the linkage members, etc as well as dynamic variability such as whole-machine accelerations, hydraulic cylinder friction, pin joint friction, etc. Some initial effort was undertaken to understand the static variables in this problem first by studying the effects of machining tolerances on the working linkage kinematics in a four-wheel-drive loader. This effort showed that if the linkage members were machined within the tolerances prescribed by the design of the linkage components, the tolerance stack-up of the machining variability had very little impact on overall linkage kinematics.<p> Once some of the static dependent variables were understood in greater detail significant effort was undertaken to understand and compensate for the dynamic dependent variables of the estimation problem. The first algorithm took a simple approach of using the kinematic linkage model coupled with hydraulic cylinder pressure information to calculate a payload estimate directly. This algorithm did not account for many of the aforementioned dynamic variables (joint friction, machine acceleration, etc) but was computationally expedient. This work however produced payload estimates with error far greater than the 1% full scale value being targeted. Since this initial simplistic effort met with failure, a second algorithm was needed. The second algorithm was developed upon the information known about the limitations of the first algorithm. A suitable method of compensating for the non-linear dependent dynamic variables was needed. To address this dilemma, an artificial neural network approach was taken for the second algorithm. The second algorithms construction was to utilise an artificial neural network to capture the kinematic linkage characteristics and all other dynamic dependent variable behaviour and estimate the payload information based upon the linkage position and hydraulic cylinder pressures. This algorithm was trained using emperically collected data and then subjected to actual use in the field. This experiment showed that that the dynamic complexity of the estimation problem was too large for a small (and computationally feasible) artificial neural network to characterize such that the error estimate was less than the 1% full scale requirement.<p> A third algorithm was required due to the failures of the first two. The third algorithm was constructed to ii take advantage of the kinematic model developed and utilise the artificial neural networks ability to perform nonlinear mapping. As such, the third algorithm developed uses the kinematic model output as an input to the artificial neural network. This change from the second algorithm keeps the network from having to characterize the linkage kinematics and only forces the network to compensate for the dependent dynamic variables excluded by the kinematic linkage model. This algorithm showed significant improvement over the previous two but still did not meet the required 1% full scale requirement. The promise shown by this algorithm however was convincing enough that further effort was spent in trying to refine it to improve the accuracy.<p> The fourth algorithm developed proceeded with improving the third algorithm. This was accomplished by adding additional inputs to the artificial neural network that allowed the network to better compensate for the variables present in the problem. This effort produced an algorithm that, when subjected to actual field use, produced results very near the 1% full scale accuracy requirement. This algorithm could be improved upon slightly with better input data filtering and possibly adding additional network inputs.<p> The final algorithm produced results very near the desired accuracy. This algorithm was also novel in that for this estimation, the artificial neural network was not used soley as the means to characterize the problem for estimation purposes. Instead, much of the responsibility for the mathematical characterization of the problem was placed upon a kinematic linkage model that then fed its own payload estimate into the neural network where the estimate was further refined during network training with calibration data and additional inputs. This method of nonlinear state estimation (i.e. utilising a neural network to compensate for nonlinear effects in conjunction with a first principles model) has not been seen previously in the literature.
7

Electrocardiogram Signal for the Detection of Obstructive Sleep Apnoea Via Artificial Neural Networks

Wang, Yuan-Hung 01 July 2004 (has links)
SAS has become an increasingly important public-health problem in recent years. It can adversely affect neurocognitive, cardiovascular, respiratory diseases and can also cause behavior disorder. Moreover, up to 90% of these cases are obstructive sleep apnea (OSA). Therefore, the study of how to diagnose, detect and treat OSA is becoming a significant issue, both academically and medically. Polysomnography can monitor the OSA with relatively fewer invasive techniques. However, polysomnography-based sleep studies are expensive and time-consuming because they require overnight evaluation in sleep laboratories with dedicated systems and attending personnel. Therefore, to improve such inconveniences, one needs to develop a simplified method to diagnose the OSA, so that the OSA can be detected with less time and reduced financial costs. Since currently there seems to be no OSA detection technique available in Taiwan, the goal of this work is to develop a reliable OSA diagnostic algorithm. In particular, via signal processing, feature extraction and artificial intelligence, this thesis describes an on-line ECG-based OSA diagnostic system. It is hoped that with such a system the OSA can be detected efficiently and accurately.
8

Image Inpainting Based on Artifical Neural Networks

Hsu, Chih-Ting 29 June 2007 (has links)
Application of Image inpainting ranges from object removal, photo restoration, scratch removal, and so on. In this thesis, we will propose a modified multi-scale method and learning-based method using artificial neural networks for image inpainting. Multi-scale inpainting method combines image segmentation, contour estimation, and exemplar-based inpainting. The main goal of image segmentation is to separate image to several homogeneous regions outside the target region. After image segmentation, we use contour estimation to estimate curves inside the target region to partition the whole image into several different regions. Then we fill those different regions inside the target region separately by exemplar-based inpainting method. The exemplar-based technique fills the target region via the texture synthesis and filling order of exemplary patches. Exemplary patches are found near target region and the filling order is determined by isophote and densities of exemplary patches. Learning-based inpainting is a novel technique. This technique combines machine learning and the concept of filling order. We use artificial neural networks to learn the structure and texture surrounding the target region. After training, we fill the target region according to the filling order. From our simulation results, very good results can be obtained for removing large-size objects by using the proposed multi-scale method, and for removing medium-size objects of gray images.
9

Tide Forecasting and Supplement by applying Wavelet Theory and Neural Network

Wang, H.D 20 July 2001 (has links)
In multiresolution analysis(MRA)by wavelet function Daubechies (db), we decompose the signal in two parts, the low and high-frequency content,respectively. We remove the high-frequency content and reconstruct a new ¡§de-noise¡¨ signal by using inverse wavelet transform. In order to improve the forecasting accuracy of ANN (Artificial Neural Network) model ,we use the concept of tidal constituent phase-lags, and the new ¡§de-noise¡¨ signal was used as the input data set of ANN. Besides, we also use wavelet spectrum, conventional energy spectrum (Fast Fourier Transform, FFT),and harmonic analysis to analyze the character of tidal data . The results show that the concept of tidal constituent phase-lags can improve ANN model of tidal forecasting and supplement, but in the wavelet analysis , the improvement is insignificant .The reason is that the energy of higher frequency noise is very small compared to the energy of the diurnal and the semi- diurnal tidal components. In other word , the ANN model has a certain tolerance of noise effect .
10

Parametric Speech Emotion Recognition Using Neural Network

Ma, Rui January 2014 (has links)
The aim of this thesis work is to investigate the algorithm of speech emotion recognition using MATLAB. Firstly, five most commonly used features are selected and extracted from speech signal. After this, statistical values such as mean, variance will be derived from the features. These data along with their related emotion target will be fed to MATLAB neural network tool to train and test to make up the classifier. The overall system provides a reliable performance, classifying correctly more than 82% speech samples after properly training.

Page generated in 0.0431 seconds