• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] INTELLIGENT SYSTEMS APPLIED TO FRAUD ANALYSIS IN THE ELECTRICAL POWER INDUSTRIES / [pt] SISTEMAS INTELIGENTES NO ESTUDO DE PERDAS COMERCIAIS DO SETOR DE ENERGIA ELÉTRICA

JOSE EDUARDO NUNES DA ROCHA 25 March 2004 (has links)
[pt] Esta dissertação investiga uma nova metodologia, baseada em técnicas inteligentes, para a redução das perdas comerciais relativas ao fornecimento de energia elétrica. O objetivo deste trabalho é apresentar um modelo de inteligência computacional capaz de identificar irregularidades na medição de demanda e consumo de energia elétrica, considerando as características sazonais não lineares das curvas de carga das unidades consumidoras, características essas que são difíceis de se representar em modelos matemáticos. A metodologia é baseada em três etapas: categorização, para agrupar unidades consumidoras em classes similares; classificação para descobrir relacionamentos que expliquem o perfil da irregularidade no fornecimento de energia elétrica e que permitam prever a classe de um padrão desconhecido; e extração de conhecimento sob a forma de regras fuzzy interpretáveis. O modelo resultante foi denominado Sistema de Classificação de Unidades Consumidoras de Energia Elétrica. O trabalho consistiu em três partes: um estudo sobre os principais métodos de categorização e classificação de padrões; definição e implementação do Sistema de Classificação de Unidades Consumidoras de Energia Elétrica; e o estudo de casos. No estudo sobre os métodos de categorização foi feito um levantamento bibliográfico da área, resultando em um resumo das principais técnicas utilizadas para esta tarefa, as quais podem ser divididas em algoritmos de categorização hierárquicos e não hierárquicos. No estudo sobre os métodos de classificação foram feitos levantamentos bibliográficos dos sistemas Neuro-Fuzzy que resultaram em um resumo sobre as arquiteturas, algoritmos de aprendizado e extração de regras fuzzy de cada modelo analisado. Os modelos Neuro-Fuzzy foram escolhidos devido a sua capacidade de geração de regras lingüísticas. O Sistema de Classificação de Unidades Consumidoras de Energia Elétrica foi definido e implementado da seguinte forma: módulo de categorização, baseado no algoritmo Fuzzy C-Means (FCM); e módulo de classificação baseado nos Sistemas Neuro-Fuzzy NEFCLASS e NFHB-Invertido. No primeiro módulo, foram utilizadas algumas medidas de desempenho como o FPI (Fuzziness Performance Index), que estima o grau de nebulosidade (fuziness) gerado por um número específico de clusters, e a MPE (Modified Partition Entropy), que estima o grau de desordem gerado por um número específico de clusters. Para validação do número ótimo de clusters, aplicou-se o critério de dominância segundo o método de Pareto. No módulo de classificação de unidades consumidoras levou-se em consideração a peculiaridade de cada sistema neuro-fuzzy, além da análise de desempenho comparativa (benchmarking) entre os modelos. Além do objetivo de classificação de padrões, os Sistemas Neuro-Fuzzy são capazes de extrair conhecimento em forma de regras fuzzy interpretáveis expressas como: SE x é A e y é B então padrão pertence à classe Z. Realizou-se um amplo estudo de casos, abrangendo unidades consumidoras de atividades comerciais e industriais supridas em baixa e média tensão. Os resultados encontrados na etapa de categorização foram satisfatórios, uma vez que as unidades consumidoras foram agrupadas de forma natural pelas suas características de demanda máxima e consumo de energia elétrica. Conforme o objetivo proposto, esta categorização gerou um número reduzido de agrupamentos (clusters) no espaço de busca, permitindo que o treinamento dos sistemas Neuro-Fuzzy fosse direcionado para o menor número possível de grupos, mas com elevada representatividade sobre os dados. Os resultados encontrados com os modelos NFHB-Invertido e NEFCLASS mostraram-se, na maioria dos casos, superiores aos melhores resultados encontrados pelos modelos matemáticos comumente utilizados. O desempenho dos modelos NFHB-Invertido e NEFCLASS, em relação ao te / [en] This dissertation investigates a new methodology based on intelligent techniques for commercial losses reduction in electrical energy supply. The objective of this work is to present a model of computational intelligence able to identify irregularities in consumption and demand electrical measurements, regarding the non-linearity of the consumers seasonal load curve which is hard to represent by mathematical models. The methodology is based on three stages: clustering, to group consumers of electric energy into similar classes; patterns classification, to discover relationships that explain the irregularities profile and that determine the class for an unknown pattern; and knowledge extraction in form of interpretable fuzzy rules. The resulting model was entitled Electric Energy Consumers Classification System. The work consisted of three parts: a bibliographic research about main methods for clustering and patterns classification; definition and implementation of the Electric Energy Consumers Classification System; and case studies. The bibliographic research of clustering methods resulted in a survey of the main techniques used for this task, which can be divided into hierarchical and non-hierarchical clustering algorithms. The bibliographic research of classification methods provided a survey of the architectures, learning algorithms and rules extraction of the neuro-fuzzy systems. Neuro-fuzzy models were chosen due to their capacity of generating linguistics rules. The Electric Energy Consumers Classification System was defined and implemented in the following way: a clustering module, based on the Fuzzy CMeans (FCM) algorithm; and classification module, based on NEFCLASS and Inverted-NFHB neuro-fuzzy sytems. In the first module, some performance metrics have been used such as the FPI (Fuzziness Performance Index), which estimates the fuzzy level generated by a specific number of clusters; and the MPE (Modified Partition Entropy) that estimates disorder level generated by a specific number of clusters. The dominance criterion of Pareto method was used to validate optimal number of clusters. In the classification module, the peculiarities of each neuro-fuzzy system as well as performance comparison of each model were taken into account. Besides the patterns classification objective, the neuro-Fuzzy systems were able to extract knowledge in form of interpretable fuzzy rules. These rules are expressed by: IF x is A and y is B then the pattern belongs to Z class. The cases studies have considered industrial and commercial consumers of electric energy in low and medium tension. The results obtained in the clustering step were satisfactory, since consumers have been clustered in a natural way by their electrical consumption and demand characteristics. As the proposed objective, the system has generated an optimal low number of clusters in the search space, thus directing the learning step of the neuro-fuzzy systems to a low number of groups with high representation over data. The results obtained with Inverted-NFHB and NEFCLASS models, in the majority of cases, showed to be superior to the best results found by the mathematical methods commonly used. The performance of the Inverted-NFHB and NEFCLASS models concerning to processing time was also very good. The models converged to an optimal classification solution in a processing time inferior to a minute. The main objective of this work, that is the non- technical power losses reduction, was achieved by the assertiveness increases in the identification of the cases with measuring irregularities. This fact made possible some reduction in wasting with workers and effectively improved the billing.

Page generated in 0.0376 seconds