Spelling suggestions: "subject:"[een] NEWTON-KRYLOV METHOD"" "subject:"[enn] NEWTON-KRYLOV METHOD""
1 |
[pt] APLICAÇÕES DA EQUAÇÃO DO CALOR NA INDÚSTRIA DO PETRÓLEO / [en] APPLICATIONS OF HEAT EQUATION IN OIL INDUSTRYIAGO ARCAS DA FONSECA 17 December 2020 (has links)
[pt] Neste trabalho focamos sobre alguns modelos matemáticos na área do
petróleo, com o objetivo de propor um modelo inicial de simulador numérico
de reservatórios. Inicialmente apresentamos uma EDP do calor não-linear
com um termo fonte de calor constante, estudada para o domínio sendo uma
placa plana quadrada homogênea e heterogênea, onde aplicamos soluções
numéricas utilizando o método das diferenças finitas implícito. Abordamos
o problema de refinamento da malha no entorno dos poços utilizando o
método JFNK (Jacobian-Free Newton-Krylov), que aumenta a eficiência
computacional através de uma aproximação para a matriz Jacobiana. Por
fim resolvemos um sistema de EDPs não-lineares que representam o escoamento
bifásico de água e óleo, constituído por equações de transporte em
termos da pressão e da saturação. Fizemos simulações numéricas de alguns
casos conhecidos e os resultados mostraram uma boa qualidade no nosso
método. / [en] In this work we focus on the numerical approximation of some
mathematical models in the oil field. First, we present a non-linear heat
equation with a constant heat source term, studied for the domain of a
homogeneous and heterogeneous square domain, where we apply numerical
solutions using an implicit finite difference method. We approach the
problem of mesh refinement around the wells using the JFNK (Jacobian-
Free Newton-Krylov) method, which improves the computational efficiency
through an approximation to the Jacobian matrix. Finally, we solve a system
of non-linear EDPs that represent the two-phase flow of water and oil,
consisting of equations of transport in terms of pressure and saturation.
Numerical simulations for some known cases showed accurate approximation
of our method.
|
2 |
[en] ADVANCES IN IMPLICIT INTEGRATION ALGORITHMS FOR MULTISURFACE PLASTICITY / [pt] AVANÇOS EM ALGORITMOS DE INTEGRAÇÃO IMPLÍCITA PARA PLASTICIDADE COM MÚLTIPLAS SUPERFÍCIESRAFAEL OTAVIO ALVES ABREU 04 December 2023 (has links)
[pt] A representação matemática de comportamentos complexos em materiais
exige formulações constitutivas sofisticada, como é o caso de modelos com
múltiplas superfícies de plastificação. Assim, um modelo elastoplástico complexo
demanda um procedimento robusto de integração das equações de evolução
plástica. O desenvolvimento de esquemas de integração para modelos de
plasticidade é um tópico de pesquisa importante, já que estes estão diretamente
ligados à acurácia e eficiência de simulações numéricas de materiais como metais,
concretos, solos e rochas. O desempenho da solução de elementos finitos é
diretamente afetado pelas características de convergência do procedimento de
atualização de estados. Dessa forma, este trabalho explora a implementação de
modelos constitutivos complexos, focando em modelos genéricos com múltiplas
superfícies de plastificação. Este estudo formula e avalia algoritmos de atualização
de estado que formam uma estrutura robusta para a simulação de materiais regidos
por múltiplas superfícies de plastificação. Algoritmos de integração implícita são
desenvolvidos com ênfase na obtenção de robustez, abrangência e flexibilidade para
lidar eficazmente com aplicações complexas de plasticidade. Os algoritmos de
atualização de estado, baseados no método de Euler implícito e nos métodos de
Newton-Raphson e Newton-Krylov, são formulados utilizando estratégias de busca
unidimensional para melhorar suas características de convergência. Além disso, é
implementado um esquema de subincrementação para proporcionar mais robustez
ao procedimento de atualização de estado. A flexibilidade dos algoritmos é
explorada, considerando várias condições de tensão, como os estados plano de
tensões e plano de deformações, num esquema de integração único e versátil. Neste
cenário, a robustez e o desempenho dos algoritmos são avaliados através de
aplicações clássicas de elementos finitos. Além disso, o cenário desenvolvido no
contexto de modelos com múltiplas superfícies de plastificação é aplicado para
formular um modelo elastoplástico com dano acoplado, que é avaliado através de
ensaios experimentais em estruturas de concreto. Os resultados obtidos evidenciam
a eficácia dos algoritmos de atualização de estado propostos na integração de
equações de modelos com múltiplas superfícies de plastificação e a sua capacidade
para lidar com problemas desafiadores de elementos finitos. / [en] The mathematical representation of complex material behavior requires a
sophisticated constitutive formulation, as it is the case of multisurface plasticity.
Hence, a complex elastoplastic model demands a robust integration procedure for
the plastic evolution equations. Developing integration schemes for plasticity
models is an important research topic because these schemes are directly related to
the accuracy and efficiency of numerical simulations for materials such as metals,
concrete, soils and rocks. The performance of the finite element solution is directly
influenced by the convergence characteristics of the state-update procedure.
Therefore, this work explores the implementation of complex constitutive models,
focusing on generic multisurface plasticity models. This study formulates and
evaluates state-update algorithms that form a robust framework for simulating
materials governed by multisurface plasticity. Implicit integration algorithms are
developed with an emphasis on achieving robustness, comprehensiveness and
flexibility to handle cumbersome plasticity applications effectively. The state-update algorithms, based on the backward Euler method and the Newton-Raphson
and Newton-Krylov methods, are formulated using line search strategies to improve
their convergence characteristics. Additionally, a substepping scheme is
implemented to provide further robustness to the state-update procedure. The
flexibility of the algorithms is explored, considering various stress conditions such
as plane stress and plane strain states, within a single, versatile integration scheme.
In this scenario, the robustness and performance of the algorithms are assessed
through classical finite element applications. Furthermore, the developed
multisurface plasticity background is applied to formulate a coupled elastoplastic-damage model, which is evaluated using experimental tests in concrete structures.
The achieved results highlight the effectiveness of the proposed state-update
algorithms in integrating multisurface plasticity equations and their ability to handle
challenging finite element problems.
|
Page generated in 0.0275 seconds