• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 750
  • 688
  • 61
  • 49
  • 21
  • 20
  • 20
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1875
  • 1875
  • 670
  • 651
  • 292
  • 161
  • 130
  • 122
  • 117
  • 115
  • 115
  • 92
  • 91
  • 89
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Investigation of the effect mutations of CaM have upon in vitro and ex vivo function

Israel, Odisho January 2010 (has links)
Calmodulin (CaM) is a calcium-binding protein that has promiscuous regulatory interactions with over three hundred intracellular protein targets. The focus of this study was to characterize the functional role of phosphorylated CaM in vitro and calcium-deficient CaM (Apo-CaM) ex vivo. In the in vitro study, the effect of phosphorylated CaM on the binding and activation of CaM target proteins was analyzed using mammalian Nitric Oxide Synthase (NOS). NOS is an enzyme that catalyzes the conversion of L-arginine to L-citrulline and •NO. In addition, the activation of NOS by modified CaM proteins was also analyzed in the presence of a CaM binding peptide, PEP-19. Protein trafficking experiments were performed ex vivo to extend our understanding of Apo-CaM’s functional role in mammalian cells. The cell lines that were used in this investigation include mouse Embryonic Stem Cells (mESC), Human Umbilical Vein Endothelia Cells (HUVEC) and Human Neuronal Glioma Cells (HNGC). The major finding of this projects are: phosphorylation of selective CaM residues can attenuated NOS activity, electrostatic interactions are important in the activation of iNOS by CaM, and the activation of iNOS by CaM occurs in a calcium-dependent manner
72

Effect of homocysteine on nitric oxide production in cardiomyocytes

Chan, Sai-yen, Victor. January 2001 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 53-67).
73

Studies on fluorescent probes for the detection of peroxynitrite and hypochlorous acid

Pan, Yilan., 潘怡兰. January 2010 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
74

Studies on FRET-based fluorescent probes for the detection of peroxynitrite

Chen, Yingche., 陈映澈. January 2011 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
75

The catalytic mechanism of dimethylarginine dimethylaminohydrolase (DDAH) from pseudomonas aeruginosa

Stone, Everett Monroe 28 August 2008 (has links)
Not available / text
76

Measurement of in vivo nitric oxide production using stable isotopes

Siervo, Mario January 2012 (has links)
No description available.
77

The role of the L-arginine/nitric oxide pathway in the arterial adaptation to simulated microgravity

Hutchings, Simon Roderick 11 1900 (has links)
Orthostatic intolerance following exposure to simulated or actual microgravity is observed following spaceflight and extended periods of bed rest, and is not always associated with simultaneous hypotension. Differential adaptation of cephalic and caudal arterial vasculatures (as a result of removal of the normal hydrostatic gradient) is proposed as a potential mechanism underlying this phenomenon. A potential role for changes to the L-arginine/nitric oxide pathway in such adaptations has been suggested, predominantly from previous in vitro studies; using an established model of simulated microgravity (head-down tilt; HDT). This thesis investigates whether findings in isolated vessels are reflected by in vivo measurements of cephalic and caudal vascular function. Using carotid or iliac artery flow normalized to mean arterial pressure as an index of cerebral or hind limb vascular conductance, autoregulatory cerebral vasodilatation in response to lower body negative pressure was found to be impaired following HDT. In addition, α¬1-adrenoceptor agonist-mediated vasoconstriction was decreased in the cerebral vasculature and increased in the peripheral and hind limb vasculature. Administration of acetylcholine or the non-selective nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) demonstrated a decreased contribution of NOS to cerebrovascular tone, but an increased contribution of NOS to peripheral vascular resistance and tone of the hind limb vasculature. Together with a lack of difference in the response to the selective inducible NOS (iNOS) inhibitor 1400W, these results suggest that differential adaptation of eNOS may account for the observed differences between control and HDT animals. Further investigation of the changes to the L-arginine/nitric oxide pathway suggest that these changes are not associated with changes in eNOS expression, but may be related to altered activity of eNOS. Furthermore, the bioavailability (as measured by pharmacokinetic half life) or the vascular effector mechanisms (as measured by the haemodynamic response to exogenously administered nitric oxide) responsible for the effects of nitric oxide were also shown to be unaffected by HDT. These findings suggest that differential adaptation of the L-arginine/nitric oxide pathway may contribute to the inability to raise total peripheral resistance and impaired cerebral autoregulation following HDT, thereby representing a mechanism of orthostatic intolerance following exposure to microgravity.
78

Can L-arginine Influence the Acute Hormonal, Metabolic, and Physiological Responses at Rest and Prior to Exercise?

Forbes, Scott C Unknown Date
No description available.
79

The role of the L-arginine/nitric oxide pathway in the arterial adaptation to simulated microgravity

Hutchings, Simon Roderick 11 1900 (has links)
Orthostatic intolerance following exposure to simulated or actual microgravity is observed following spaceflight and extended periods of bed rest, and is not always associated with simultaneous hypotension. Differential adaptation of cephalic and caudal arterial vasculatures (as a result of removal of the normal hydrostatic gradient) is proposed as a potential mechanism underlying this phenomenon. A potential role for changes to the L-arginine/nitric oxide pathway in such adaptations has been suggested, predominantly from previous in vitro studies; using an established model of simulated microgravity (head-down tilt; HDT). This thesis investigates whether findings in isolated vessels are reflected by in vivo measurements of cephalic and caudal vascular function. Using carotid or iliac artery flow normalized to mean arterial pressure as an index of cerebral or hind limb vascular conductance, autoregulatory cerebral vasodilatation in response to lower body negative pressure was found to be impaired following HDT. In addition, α¬1-adrenoceptor agonist-mediated vasoconstriction was decreased in the cerebral vasculature and increased in the peripheral and hind limb vasculature. Administration of acetylcholine or the non-selective nitric oxide synthase (NOS) inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) demonstrated a decreased contribution of NOS to cerebrovascular tone, but an increased contribution of NOS to peripheral vascular resistance and tone of the hind limb vasculature. Together with a lack of difference in the response to the selective inducible NOS (iNOS) inhibitor 1400W, these results suggest that differential adaptation of eNOS may account for the observed differences between control and HDT animals. Further investigation of the changes to the L-arginine/nitric oxide pathway suggest that these changes are not associated with changes in eNOS expression, but may be related to altered activity of eNOS. Furthermore, the bioavailability (as measured by pharmacokinetic half life) or the vascular effector mechanisms (as measured by the haemodynamic response to exogenously administered nitric oxide) responsible for the effects of nitric oxide were also shown to be unaffected by HDT. These findings suggest that differential adaptation of the L-arginine/nitric oxide pathway may contribute to the inability to raise total peripheral resistance and impaired cerebral autoregulation following HDT, thereby representing a mechanism of orthostatic intolerance following exposure to microgravity.
80

Neuronal growth cone dynamics are regulated by a nitric oxide-initiated second messenger pathway

Welshhans, Kristy. January 2007 (has links)
Thesis (Ph. D.)--Georgia State University, 2007. / Vincent Rehder, committee chair; Sarah Pallas, Walter William Walthall, committee members. Electronic text (248 p. : ill. (some col.)) : digital, PDF file. Description based on contents viewed Jan. 28, 2008; title from file title page. Includes bibliographical references (p. 218-248).

Page generated in 0.0381 seconds