• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 25
  • 15
  • 9
  • 5
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 216
  • 216
  • 45
  • 36
  • 30
  • 30
  • 29
  • 26
  • 25
  • 21
  • 21
  • 19
  • 18
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aspects of thermography for non-destructive testing in mechanical maintenance

Jama, Bandile, Gryzagoridis, Jasson, Wilson, Graham January 2017 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2017. / Infrared thermography (IRT) is a non-contacting, non-destructive testing (NDT) technique that provides relatively fast results from inspections; for example, in the detection of defects in engineering components and in systems' condition monitoring. This study examines the use and possible effectiveness of infrared thermography for the detection of faults and defects in just a few aspects that one encounters in the vast mechanical maintenance arena. The study discusses three aspects of infrared thermography, namely internal leaks inspections using passive infrared thermography, pulse thermography and induction thermography both active IRT NDT techniques for the detection of subsurface and surface defects. The promising results that were obtained by performing an experiment in the laboratory using a model fluid handling pipe network, with three isolation valves connected in parallel, encouraged performing inspections in an operating power plant, where it was suspected that there were leaks from safety and drain isolation valves. In both situations, the results were obtained in a short period of time and indicated that passive infrared thermography can detect internal leaks in pipe networks. Pulsed thermography is an active non-contacting non-destructive testing technique used to detect subsurface defects in monolithic materials and delamination's in composites. In the particular experiment that was performed pulse thermography was benchmarked with the conventional technique of ultrasound testing. PVC, stainless steel and mild steel specimens manufactured with flat bottom holes (as models of subsurface defects) were subjected to pulse thermography. The time duration to detect the presence of a defect represented by a temperature contrast or a hot spot on the specimen's surface was approximately a couple of seconds following the thermal excitation. No further characterization of the defect was possible with the technique. In contrast when using the ultrasound testing technique to test the specimens, it took considerable time to detect the defects, however, data in terms of size and depth beneath the surface became available thus enabling their full characterization.
12

The effect of bonding on waves in laminated plates

Thompson, Charles Nathaniel January 1992 (has links)
No description available.
13

Implementation and application of NDE on ceramic candle filters

Kiriakidis, Alejandro C., January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains xiv, 185 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 170-176).
14

Nondestructive quantitative analysis of radioactive multielement materials using gamma scintillation spectrometry

Antilla, Eric Ferdinand, 1927- January 1961 (has links)
No description available.
15

Laboratory analysis of small strain moduli in compacted silts

Weidinger, David M., January 2008 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed October 20, 2008) Includes bibliographical references.
16

Ultrasonic wave propagation in poly(vinyl alcohol) and articular cartilage

Hsu, Hsingching. January 2004 (has links) (PDF)
Thesis (M.S.)--School of Mechanical Engineering, Georgia Institute of Technology, 2005. Directed by Marc Levenston. / Marc Levenston, Committee Co-Chair ; Yves Berthelot, Committee Co-Chair ; Robert Guldberg, Committee Member. Includes bibliographical references.
17

Structural integrity assessment of cantilevered type concrete structures by instrumented impact hammer (IIH) technique & ultrasonic pulse velocity (UPV) technique

Chan, Denny Yuk. January 2005 (has links) (PDF)
Thesis (M.Sc.)--City University of Hong Kong, 2005. / At head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Aug. 31, 2006) Includes bibliographical references.
18

Non-destructive evaluation with ultrasonic pulse velocity (UPV) in concrete structure

Lau, Connie K. Y. January 2005 (has links) (PDF)
Thesis (M.Sc.)--City University of Hong Kong, 2005. / At head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Sept. 1, 2006) Includes bibliographical references.
19

Non-destructive evaluation with ultrasonic pulse velocity (UPV) in concrete structure

Mong, Seng Ming. January 2005 (has links) (PDF)
Thesis (M.Sc.)--City University of Hong Kong, 2005. / At head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Sept. 4, 2006) Includes bibliographical references.
20

Nondestructive Flaw Characterization in a Unidirectional Composite Plate

Imbert de Smirnoff, Severine January 2002 (has links) (PDF)
No description available.

Page generated in 0.0444 seconds