Spelling suggestions: "subject:"[een] NUMERICAL SIMULATION"" "subject:"[enn] NUMERICAL SIMULATION""
51 |
Numerical exploration of radiative-dynamic interactions in cirrusSjöström, Stina January 2007 (has links)
An important factor in forecast models today is cirrus clouds, but not much are known about their dynamics which makes them hard to parameterize. In this study a new theory was derived to enable a more correct way to describe the interplay between radiative heating and dynamical motions in these clouds. This hypothesis was tested by performing three dimensional simulations of cirrus clouds, using the University of Utah Large Eddy Simulator (UULES). Eleven clouds of varying initial radius and ice water mixing ratio were examined, with the aim of finding a pattern in their dynamical features. The model was set up without short wave radiation from the sun, and without any precipitation affecting the clouds, leaving only terrestrial heating and atmospheric cooling to create motions in the clouds. Two categories of initial dynamics could be seen: • Isentropic adjustment: The isentropes within the cloud are adjusting to the environment due to rising of the cloud. Causes horizontal spreading through continuity. • Density current: A dominating initial feature is spreading in small mixed layers at the cloud top and bottom. Caused by the density difference between the cloud and its environment. An interesting phenomenon showing up in the simulations was mammatus clouds, which were visible in two of the cases. The only instability available to create these clouds was the radiative heating difference, which does not agree with present theories for how they form. Two dimensionless numbers S and C were derived to describe the nature of the spreading motions and convection in the cloud. Both these numbers agreed with results. / Cirrusmoln har en viktig roll i dagens prognosmodeller, men är svåra att parametrisera på ett bra sätt eftersom man inte har tillräcklig kunskap om deras dynamik och utveckling. I denna studie togs en ny teori fram för att göra det möjligt att på ett mer korrekt sätt beskriva samspelet mellan strålningsuppvärmning och dynamiska rörelser i dessa moln. Hypotesen testades sedan genom att utföra tredimensionella simuleringar av cirrus moln med hjälp av University of Utah Large Eddy Simulator (UULES). Elva moln med varierande initiella radier och isvatteninnehåll undersöktes, med målet att finna ett mönster i dynamik och utveckling. UULES ställdes in så att miljön där molnen simulerades varken innehöll kortvågsstrålning från solen eller nederbörd. Således fanns det bara en resterande faktor för att skapa rörelser i molnen; skillnaden i den infraröda strålningsuppvärmningen mellan molntopp och molnbas. Två kategorier av initiella rörelser uppstod i molnen: • Justering av isotroper: Molnen stiger i höjd vilket gör att isotroperna inuti dem justeras till omgivningen. Detta orsakar horisontell spridning genom kontinuitet. • Densitets ström: Horisontell spridning av molnen koncentrerad till mixade skikt i de övre och undre delarna. Orsakas av skillnad i densitet mellan moln och omgivning. Ett intressant fenomen som visade sig i två av simuleringarna var mammatusmoln. Den enda instabiliteten tillgänglig för att skapa dessa moln var skillnaden i strålningsuppvärmning mellan molntopp och -bas. Detta stämmer inte överrens med nuvarande teorier för hur dessa moln skapas. Två dimensionslösa tal, S och C togs fram för att indikera vilken av de initiella rörelserna som dominerar i molnet, samt vilken typ av konvektion som dominerar. Båda dessa tal stämde väl överrens med resultat.
|
52 |
地面板上の物体から発生する空力音の計算加藤, 由博, KATO, Yoshihiro, MEN'SHOV, Igor, 中村, 佳朗, NAKAMURA, Yoshiaki January 2006 (has links)
No description available.
|
53 |
排砂ゲートに制約された河岸侵食を伴う堆積土砂フラッシュに関する研究後藤, 孝臣, GOTO, Takaomi, 北村, 忠紀, KITAMURA, Tadanori, 辻本, 哲郎, TSUJIMOTO, Tetsuro 02 1900 (has links)
No description available.
|
54 |
Numerical modelling of Langmuir probe measurements for the Swarm spacecraftChiaretta, Marco January 2011 (has links)
This work studies the current collected by the spherical Langmuir probes to be mounted on the ESA Swarm satellites in order to quantify deviations from idealized cases caused by non-ideal probe geometry. The finite-element particle-in-cell code SPIS is used to model the current collection of a realistic probe, including the support structures, for two ionospheric plasma conditions with and without drift velocity. SPIS simulations are verified by comparing simulations of an ideal sphere at rest to previous numerical results by Laframboise parametrized to sufficient accuracy. It is found that for probe potentials much above the equivalent electron temperature, the deviations from ideal geometry decrease the current by up to 25 % compared to the ideal sphere case and thus must be corrected if data from this part of the probe curve has to be used for plasma density derivations. In comparison to the non-drifting case, including a plasma ram flow increases the current for probe potentials around and below the equivalent ion energy, as the contribution of the ions to the shielding is reduced by their high flow energy.
|
55 |
Small Scale Stochastic Dynamics For Particle Image Velocimetry ApplicationsHohenegger, Christel 16 March 2006 (has links)
Fluid velocities and Brownian effects at nanoscales in the near-wall region of microchannels can be experimentally measured in an image plane parallel to the wall using, for example, evanescent wave illumination technique combined with particle image velocimetry [R. Sadr extit{et al.}, J. Fluid. Mech. 506, 357-367 (2004)]. The depth of field of this technique being difficult to modify, reconstruction of the out-of-plane dependence of the in-plane velocity profile remains extremely challenging. Tracer particles are not only carried by the flow, but they undergo random fluctuation imposed by the proximity of the wall. We study such a system under a particle based stochastic approach (Langevin) and a probabilistic approach (Fokker-Planck). The Langevin description leads to a coupled system of stochastic differential equations. Because the simulated data will be used to test a statistical hypothesis, we pay particular attention to the strong order of convergence of the scheme developing an appropriate Milstein scheme of strong order of convergence 1. Based on the probability density function of mean in-plane displacements, a statistical solution to the problem of the reconstruction of the out-of-plane dependence of the velocity profile is proposed. We developed a maximum likelihood algorithm which determines the most likely values for the velocity profile based on simulated perfect particle position, simulated perfect mean displacements and simulated observed mean displacements. Effects of Brownian motion on the approximation of the mean displacements are briefly discussed. A matched particle is a particle that starts and ends in the same image window after a measurement time. AS soon as the computation and observation domain are not the same, the distribution of the out-of-plane distances sampled by matched particles during the measurement time is not uniform. The combination of a forward and a backward solution of the one dimensional Fokker-Planck equation is used to determine this probability density function. The non-uniformity of the resulting distribution is believed to induce a bias in the determination of slip length and is quantified for relevant experimental parameters.
|
56 |
Numerical study for interdigitated micro-PEMFC stackYang, Su-Bin 10 August 2010 (has links)
According to the previous experimental fact that an interdigitated single PEMFC has a better performance than other flow type single PEMFC, therefore this research is aimed to predict a two-cell stack interdigitated PEMFC via a numerical simulation. Investigation the effects of the cell temperature, the cell operating pressure, the fuel flow rate and the air flow rate are performed. This research can provide design reference for application of interdigitated PEMFC stack.
|
57 |
レーザによる熱可塑性プラスチックのラップ接合 (第3報, 数値シミュレーションによる接合条件の検討)NAKAMURA, Takashi, 長谷川, 達也, HASEGAWA, Tatsuya, 高井, 雄一郎, TAKAI, Yuichiro, 土井, 晋太郎, DOI, Shintaro, 中村, 隆, 前田, 知宏, MAEDA, Tomohiro 09 1900 (has links)
No description available.
|
58 |
Numerical simulation of topography and stratification effects to the internal tide in Gaoping Submarine CanyonLee, Ying-Tsao 10 September 2009 (has links)
It is generally understood that tidal currents ominated the flow field in many submarine canyons, and internal tide may be an order of magnitude more energetic than that of barotropic. The internal tide can be generated and amplified in a marine environment with the strong vertical density interface. The barotropic tides were known to play the dominant
role in driving the internal tides at the topographic relief or shelf break.This research tries to look at the mechanisms of internal tides generation and propagation in the Kaoping Submarine Canyon off southwestern Taiwan, using Princeton Ocean Model (POM) with different settings. The model was tested with bottom topography of flat, a slope and real water
depth, with and without vertical stratifications. The model settings are grid size 500m, simulate period days, radiation boundary condition at 4 sides. The model forcings are sea level variations at the west side, both semidiurnal tide (M2) and mixed tide (M2+K1) based on OSU tidal model TPXO 6.2. The results suggest that the offshore M2 tidal forcing
can generate large internal tidal currents within the canyon with vertical density stratification. The internal tidal currents at the upper-layer of the canyon lag that of lower-layer 3~5 hours. There is no time lag and no
amplification of current in the canyon if there is no stratification. There is a transition zone of minimum flow at depth of about 100-200m. Below the interface, the amplitude of semidiurnal internal tidal current increased with water depth in the canyon. The simulated density contours suggest a 120m amplitude vertical fluctuation center at 150m depth, with 5¢J temperature fluctuation. The computed baroclinic energy flux indicates that the energy in lower layer of the canyon is stronger than that of upper
layer. The high energy flux appears at the canyon foot and rim, and propagates along the canyon axis landward.
|
59 |
Investigation of the effects of buoyancy and heterogeneity on the performance of surfactant floodsTavassoli, Shayan 16 February 2015 (has links)
The primary objectives of this research were to understand the potential for gravity-stable surfactant floods for enhanced oil recovery without the need for mobility control agents and to optimize the performance of such floods. Surfactants are added to injected water to mobilize the residual oil and increase the oil production. Surfactants reduce the interfacial tension (IFT) between oil and water. This reduction in IFT reduces the capillary pressure and thus the residual oil saturation, which then results in an increase in the water relative permeability. The mobility of the surfactant solution is then greater than the mobility of the oil bank it is displacing. This unfavorable mobility ratio can lead to hydrodynamic instabilities (fingering). The presence of these instabilities results in low reservoir sweep efficiency. Fingering can be prevented by increasing the viscosity of the surfactant solution or by using gravity to stabilize the displacement below a critical velocity. The former can be accomplished by using mobility control agents such as polymer or foam. The latter is called gravity-stable surfactant flooding, which is the subject of this study. Gravity-stable surfactant flooding is an attractive alternative to surfactant polymer flooding under certain favorable reservoir conditions. However, a gravity-stable flood requires a low velocity less than the critical velocity. Classical stability theory predicts the critical velocity needed to stabilize a miscible flood by gravity forces. This theory was tested for surfactant floods with ultralow interfacial tension and found to over-estimate the critical velocity compared to both laboratory displacement experiments and fine-grid simulations. Predictions using classical stability theory for miscible floods were not accurate because this theory did not take into account the specific physics of surfactant flooding. Stability criteria for gravity-stable surfactant flooding were developed and validated by comparison with both experiments and fine-grid numerical simulations. The effects of vertical permeability, oil viscosity and heterogeneity were investigated. Reasonable values of critical velocity require a high vertical permeability without any continuous barriers to vertical flow in the reservoir. This capability to predict when and under what reservoir conditions a gravity-stable surfactant flood can be performed at a reasonable velocity is highly significant. Numerical simulations were also used to show how gravity-stable surfactant flooding can be optimized to increase critical velocity, which shortens the project life and improves the economics of the process. The critical velocity for a stable surfactant flood is a function of the microemulsion viscosity and it turns out there is an optimum value that can be used to significantly increase the velocity and maintain stability. For example, the salinity gradient can be optimized to gradually decrease the microemulsion viscosity. Another alternative is to inject a polymer drive following the surfactant solution, but using polymer complicates the process and adds to its cost without significant benefit in most gravity-stable surfactant floods. A systematic approach was introduced to make decisions on using polymer in applications based on stability criteria and cost. Also, the effect of an aquifer on gravity-stable surfactant floods was investigated as part of a field-scale study and strategies were developed to minimize its effect on the process. This study has provided new insights into the design of an optimized gravity-stable surfactant flood. The results of the numerical simulations show the potential for high oil recovery from gravity-stable surfactant floods using horizontal wells. Application of gravity-stable surfactant floods reduces the cost and complexity of the process. The widespread use of horizontal wells has greatly increased the attractiveness and potential for conducting surfactant floods in a gravity-stable mode. This research has provided the necessary criteria and tools needed to determine when gravity-stable surfactant flooding is an attractive alternative to conventional surfactant-polymer flooding. / text
|
60 |
The Growth and Enrichment of the Intragroup GasLiang, Lichen 31 August 2015 (has links)
The observable properties of galaxy groups, and especially the thermal and chemical properties of the intragroup medium (IGrM), provide important constraints on the different feedback processes associated with massive galaxy formation and evolution. In this {work}, we present a detailed analysis of the global properties of simulated galaxy groups with X-ray temperatures in the range $0.5 - 2$ keV over the redshift range $0 \leq z \leq 3$. The groups are drawn from a cosmological smoothed particle hydrodynamics simulation that includes a well-constrained prescription for momentum-driven, galactic outflows powered by stars and supernovae but no explicit treatment of AGN feedback. Our aims are (a) to establish a baseline against which we will compare future models; (b) to identify model successes that are genuinely due to stellar/supernovae-powered outflows; and (c) to pinpoint mismatches that not only signal the need for AGN feedback but also constrain the nature of this feedback.
We find that even without AGN feedback, our simulation successfully reproduces the observed present-day group properties such as the IGrM mass fraction, the various X-ray luminosity-temperature-entropy scaling relations, as well as both the mass-weighted and the emission-weighted IGrM iron and silicon abundance versus IGrM temperature relationships, for all but the most massive groups. We also show that these trends evolve self-similarly for $z < 1$, in agreement with the observations. In contrast to the usual expectations, we do not see any evidence of the IGrM undergoing catastrophic cooling. And yet, the $z=0$ group stellar mass is a factor of $\sim 2$ too high. Probing further, we find that the latter is due to the build-up of cold gas in the massive galaxies {\it before} they are incorporated inside groups. This not only indicates that another feedback mechanism must activate as soon as the galaxies achieve $M_*\approx$ a few $\times 10^{10}\;\rm{M_{\odot}}$ but that this feedback mechanism must be powerful enough to expel a significant fraction of the halo gas component from the galactic halos. ``Maintenance-mode" AGN feedback of the kind observed in galaxy clusters will not do. At the same time, we find that stellar/supernovae-powered winds are essential for understanding the metal abundances in the IGrM and these results are expected to be relatively insensitive to the addition of AGN feedback.
We further examine the detailed distribution of the metals within the groups and their origin. We find that our simulated abundance profiles fit the observational data pretty well except that in the innermost regions, there appears to have an excess of metals in the IGrM, which is attributed to the overproduction of stars in the central galaxies. The fractional contribution of the different types of galaxies varies with radial distances from the group center. While the enrichment in the core regions of the groups is dominated by the central and satellite galaxies, the external galaxies become more important contributors to the metals at $r\simgreat R_{500}$. The IGrM at the groups' outskirts is enriched at comparatively higher redshifts, and by relatively less massive galaxies. / Graduate
|
Page generated in 0.0316 seconds