• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] FORECASTING DEMAND FOR OFFSHORE AIR PASSENGERS USING HIERARCHICAL TIME SERIES TECHNIQUES / [pt] PREVISÃO DE DEMANDA DE PASSAGEIROS AÉREOS OFFSHORE UTILIZANDO TÉCNICAS DE SÉRIES TEMPORAIS HIERÁRQUICAS

TIAGO FARIA ROCHA 21 September 2020 (has links)
[pt] Um bom gerenciamento logístico otimiza as atividades de transporte aéreo offshore, tornando-as mais eficientes e diminuindo custos para o contratante. Uma série de decisões estratégicas, por exemplo a contratação de helicópteros e os investimentos em infraestrutura aeroportuária, são dependentes da previsão de demanda de passageiros. O presente trabalho analisou a demanda de transporte aéreo offshore da Petrobras para o Estado do Rio de janeiro, à luz das principais teorias de séries temporais hierárquicas, com o objetivo de identificar qual destas é mais adequada para um horizonte de previsão de doze meses à frente. Foram analisadas as estratégias de single-level approach (bottom-up e top-down), de reconciliação ótima (ordinary least squares e weighted least squares) e de minimização de traço (covariância da própria amostra e valendo-se do shrink estimator), todas utilizando como método de previsão base o amortecimento exponencial. Foram utilizados dados dos anos de 2014 até 2019 de todos os aeródromos usados pela Petrobras no Estado do Rio de Janeiro: Farol de São Tomé, Campos dos Goytacazes, Macaé, Cabo Frio e Jacarepaguá. Os resultados foram avaliados em três métricas distintas de acurácia: RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) e MASE (Mean Absolute Scaled Error), sendo aplicados para os dois níveis existentes de agregação. Os resultados foram ranqueados para cada técnica, nas três métricas citadas anteriormente, sendo, então, consolidados através de uma média aritmética simples. Ao cabo, concluiu-se que o método de minimização de traço sample covariance é o mais preciso em termos globais. / [en] Good logistical management optimizes offshore air transport activities, making them more efficient and reducing costs for the contractor.A series of strategic decisions, such as hiring helicopters and investments in airport infrastructure are dependent on forecasting passenger demand. The present work consisted of analyzing the demand for Petrobras offshore air transport to the State of Rio de Janeiro, based on the main theories of hierarchical time series, with the objective of identifying which of these is more suitable for a twelve-month steps ahead forecast. The strategies of single-level approach (bottom-up and top-down), optimal reconciliation (ordinary least squares and weighted least squares) and trace minimization (sample covariance and shrink estimator) were analyzed, all using exponential smoothing as the basic forecasting method. Data from 2014 to 2019 were gathered for all aerodromes used by Petrobras in the State of Rio de Janeiro: Farol de São Tomé, Campos dos Goytacazes, Macaé, Cabo Frio and Jacarepaguá. The results were evaluated with three different metrics of accuracy: RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) and MASE (Mean Absolute Scaled Error), applied to the two existing levels of aggregation. The results were ranked for each technique, in the three metrics mentioned above, and then consolidated using a simple arithmetic mean. The overall results indicated that sample covariance trace minimization method provided the most accurate results.
2

[en] A STOCHASTIC APPROACH FOR OFFSHORE FLIGHT SCHEDULING OPTIMIZATION / [pt] UMA ABORDAGEM ESTOCÁSTICA PARA A OTIMIZAÇÃO DA PROGRAMAÇÃO DE VOOS OFFSHORE

YAN BARBOZA BASTOS 23 December 2020 (has links)
[pt] A Petrobras, maior empresa de óleo e gás do Brasil e uma das maiores do mundo, possui mais de 94 porcento da sua produção proveniente de campos offshore. Na região Sudeste o transporte dos trabalhadores para as unidades marítimas de exploração e produção é realizado por modal aéreo, através de helicópteros afretados de médio a grande porte. Para atender ao grande número de voos, a Petrobras possui uma central de planejamento e programação de voos, cujo objetivo é construir escalas de atendimento eficientes, em relação ao uso de recursos e ao nível de serviço. Um dos desafios enfrentados é gerar, manualmente, programações dos voos em situações de ruptura do atendimento, como por exemplo quando ocorre interrupção de pousos e decolagens devido a condições meteorológicas adversas (exigindo que os voos sejam programados para horários posteriores aos previamente planejados). Nessa dissertação de mestrado, é proposta uma abordagem de programação estocástica para gerar a programação de voos offshore ótima do ponto de vista do nível de serviço, reduzindo os atrasos esperados nos voos. Considerando a característica combinatória dos problemas de agendamento, utilizou-se o método de Aproximação pela Média Amostral (SAA) para gerar os cenários do modelo de programação estocástica. Um modelo de Simulação de Eventos Discretos também foi desenvolvido para avaliar o nível de serviço das programações de voos geradas. Os resultados numéricos indicam que a abordagem estocástica pode reduzir atrasos imprevisíveis, que causam grande impacto nos passageiros e na cadeia de suprimentos. / [en] Petrobras, the largest oil and gas company in Brazil and one of the largest in the world, has more than 94 percent of its production from offshore fields. In the Southeast region, workers are transported to offshore exploration and production units by air, using medium size to large size chartered helicopters. To serve the large number of flights, Petrobras has a flight planning and scheduling center, with the objective of building efficient service scales, related to the use of resources and the level of service. One of the challenges faced is to generate, manually, flight schedules in situations of disruption of service, such as when there is an interruption of landings and takeoffs due to adverse weather conditions (requiring that flights be scheduled for times after those previously planned). In this master s thesis, a stochastic programming approach is proposed to generate the optimal offshore flight schedule from the service level point of view, reducing expected flight delays. Considering the combinatorial characteristic of scheduling problems, the Sample Average Approximation (SAA) method was used to generate the scenarios of the stochastic programming model. A Discrete Event Simulation model was also developed to evaluate the service level of the generated flight schedules. The numerical results indicate that the stochastic approach can reduce unpredictable delays, which have a major impact on passengers and the supply chain.

Page generated in 0.0384 seconds