Spelling suggestions: "subject:"[een] OFFSHORE RIG"" "subject:"[enn] OFFSHORE RIG""
1 |
[pt] ANÁLISE DE INCERTEZAS E REDUÇÃO DE CENÁRIOS EM ALOCAÇÃO DE RECURSOS DE TAREFAS DE SONDAS MARÍTIMAS: UMA ABORDAGEM DE MACHINE LEARNING / [en] UNCERTAINTY AND SCENARIO REDUCTION IN MATERIAL RESOURCES ALLOCATION OF OFFSHORE RIGS: A MACHINE LEARNING APPROACHRACHEL MARTINS VENTRIGLIA 18 April 2024 (has links)
[pt] O planejamento de recursos materiais é uma parte importante do
gerenciamento da cadeia de suprimentos. As tarefas na cadeia de suprimentos
precisam de materiais e recursos para serem executadas e, portanto, alocar os
recursos corretamente é uma parte importante do planejamento de tarefas.
Especificamente, as tarefas de construção de poços submarinos requerem a
utilização de recursos, como sondas, e o planejamento do cronograma dessas
operações envolve o dimensionamento de diversos materiais e serviços necessários
para sua execução. Este estudo é motivado pelo planejamento de programação real
de uma grande empresa de Óleo e Gás que estima estocasticamente a demanda por
materiais e serviços devido às incertezas associadas às tarefas em suas datas de
início e durações. O cálculo da demanda varia de acordo com o cronograma atual
que a empresa possui e a um conjunto de regras que indicam condições de alocação,
parâmetros logísticos, condições de desembarque e dependências para alocar as
ferramentas e serviços necessários para cada tarefa e estimar sua quantidade e
quantos dias em que serão usados. Este conjunto de ferramentas e regras pode
mudar dependendo do usuário e de seu conhecimento operacional. Além disso, a
empresa utiliza um grande número de cenários, o que resulta em tempos
computacionais extremamente altos e impacta a tomada de decisões operacionais.
Nesse contexto, a redução de cenários poderia auxiliar a empresa no seu processo
de tomada de decisão. A metodologia proposta neste trabalho avalia e identifica
cenários representativos de incerteza nos cronogramas de planejamento estratégico
de sondas offshore, a fim de reduzir o número de cenários utilizados no cálculo da
demanda por ferramentas e serviços. Com a utilização de técnicas não
supervisionadas, como k-means e agrupamento hierárquico, foi identificado um
subconjunto com os cenários mais representativos para a redução de cenários. A
Distância de Wasserstein e a visualizações gráficas foram utilizadas para calcular a
representatividade dos cenários selecionados e encontrar o melhor subconjunto.
Além disso, o subconjunto de cenários proveniente da redução também foi utilizado
para analisar o impacto da redução no cálculo da demanda. O Clustering
Aglomerativo com Ward Linkage obteve os melhores resultados de clusterização e
representatividade, resultando em um subconjunto de redução de 782 cenários. Para
encontrar um conjunto mínimo representativo de cenários, foi utilizado o melhor
método de agrupamento, junto com a Distância de Wasserstein, e por fim obtido
um número de 343 cenários. Isto apresenta uma redução de 84 por cento no tempo de
execução do cálculo da demanda, com o erro maior de 11 por cento no cálculo da demanda. / [en] Material resource planning is an integral part of supply chain management.
The tasks in the supply chain need materials and resources to be executed, thus,
allocating resources correctly is an important part of task scheduling. Specifically,
construction tasks for subsea wells require the use of resources, such as rigs, and
planning the schedule of these operations involves the sizing of various materials
and services necessary for their execution. This study is motivated by real-life
scheduling planning from a large Oil and Gas company that estimates the demand
for materials and services stochastically due to the uncertainties associated with the
tasks in their start dates and durations. The calculation of the demand is subject to
the current schedule that the company has and a set of rules that indicate allocation
conditions, logistics parameters, disembarking conditions, and dependencies to
allocate the tools and services needed for each task and estimate their quantity and
how many days they will be used. These sets of tools and rules can change
depending on the user and their operation knowledge. Additionally, the company
uses a large number of scenarios, which results in extremely high computational
times and impacts operational decision-making. In this context, scenario reduction
could assist the company in its decision-making process. The methodology
proposed in this work evaluates and identifies representative scenarios of
uncertainty in strategic planning schedules of offshore rigs in order to reduce the
number of scenarios used in the calculation of the demand for tools and services.
With the use of unsupervised techniques, such as k-means and hierarchical
clustering, we identified a subset with the most representative scenarios for the
scenario reduction. The Wasserstein Distance and graphical visualization were used
to measure the representativeness of the selected scenarios and find the best subset.
Moreover, the scenario reduction subset was also used to analyze the impact of the
reduction in the demand calculation. The Agglomerative Clustering with Ward
Linkage (hierarchical clustering) obtained the best clustering evaluation and
representativeness metrics, resulting in a selected subset of 782 scenarios. To find
a minimal representative set of scenarios, the best clustering method and the
Wasserstein Distance were used, resulting in a number of 343 scenarios. This
presents a reduction of 84 percent in the execution time of the demand calculation, with
the highest error of 11 percent in the demand calculation.
|
2 |
[pt] CLASSIFICAÇÃO DE FALHAS DE EQUIPAMENTOS DE UNIDADE DE INTERVENÇÃO EM CONSTRUÇÃO DE POÇOS MARÍTIMOS POR MEIO DE MINERAÇÃO TEXTUAL / [en] TEXT CLASSIFICATION OF OFFSHORE RIG EQUIPMENT FAILURE07 April 2020 (has links)
[pt] A construção de poços marítimos tem se mostrado uma atividade complexa
e de alto risco. Para efetuar esta atividade as empresas se valem principalmente
das unidades de intervenção de poços, também conhecidas como sondas. Estas
possuem altos valores de taxas diárias de uso devido à manutenção preventiva da
unidade em si, mas também por falhas as quais seus equipamentos estão sujeitos.
No cenário específico da Petrobras, em junho de 2011, foi implantado no banco de
dados da empresa um maior detalhamento na classificação das falhas de
equipamentos de sonda. Com isso gerou-se uma descontinuidade nos registros da
empresa e a demanda para adequar estes casos menos detalhados à classificação
atual, mais completa. Os registros são compostos basicamente de informação
textual. Para um passivo de 3384 registros, seria inviável alocar uma pessoa para
classificá-los. Com isso vislumbrou-se uma ferramenta que pudesse efetuar esta
classificação da forma mais automatizada possível, utilizando os registros feitos
após junho de 2011 como base. O objetivo principal deste trabalho é de sanar esta
descontinuidade nos registros de falha de equipamentos de sonda. Os dados foram
tratados e transformados por meio de ferramentas de mineração textual bem como
processados pelo algoritmo de aprendizado supervisionado SVM (Support Vector
Machines). Ao final, após obter a melhor configuração do modelo, este foi
aplicado às informações textuais do passivo de anormalidades, atribuindo suas
classes de acordo com o novo sistema de classificação. / [en] Off-shore well construction has shown to be a complex and risky activity. In
order to build off-shore wells, operators rely mainly on off-shore rigs. These rigs
have an expensive day rate, related to their rental and maintenance, but also due to
their equipment failure. At off-shore Petrobras scenario, on June of 2011, was
implemented at the company database a better detailing on the classification of rig
equipment failure. That brought a discontinuity to the database records and
created a demand for adequacy of the former classification to the new
classification structure. Basically, rig equipment failure records are based on
textual information. For a liability of 3384 records, it was unable for one person to
manage the task. Therefore, an urge came for a tool that could classify these
records automatically, using database records already classified under the new
labels. The main purpose of this work is to overcome this database discontinuity.
Data was treated and transformed through text mining tools and then processed by
supervised learning algorithm SVM (Support Vector Machines). After obtaining
the best model configuration, the old records were submitted under this model and
were classified according to the new classification structure.
|
Page generated in 0.0327 seconds