• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 74
  • 14
  • 9
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 243
  • 243
  • 92
  • 90
  • 30
  • 28
  • 24
  • 18
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The kinetics of a general ionic reaction

Greenspan, Joseph, January 1933 (has links)
Thesis (Ph. D.)--Columbia University, 1933. / Vita. Bibliography: p. 23.
22

Organic and amino acid metabolism in higher plants

King, Kendall W. January 1952 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1952. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 43-48).
23

The action of acid chlorides upon trimethylamine The action of hydroxylamine upon sulfinic acids and their derivatives ...

Whalen, Herbert Franklin, January 1925 (has links)
Thesis (Ph. D.)--Princeton University, 1924.
24

Solubility and fractionation of acid-precipitated casein using salts of certain organic acids

Gould, Stephen Phillip, January 1937 (has links)
Thesis (Ph. D.)--Columbia University, 1937. / Vita. Bibliography: p. 47-49.
25

The influence of variety and maturity on organic acids and related constituents in the highbush blueberry (Vaccinium corymbosum, L.)

Vance, Bayne Ferrier January 1964 (has links)
The possibility of evaluating the quality of blueberry fruit in chemical terms rather than by color or organoleptic methods was considered. The fruit of three varieties of commercial highbush blueberries at four stages of physiological maturity was analysed for total solids, water-insoluble solids, soluble solids, titratable acids, total acids, volatile acids, reducing sugars, total sugars and sugar-acid ratios. Differences among varieties and stages of physiological maturity were sought by use of the above measurements supplemented by a study of the individual organic acid patterns of the fruit. Meaningful differences were evident among the four stages of physiological maturity for all measurements except volatile acids and total solids. Varietal differences were evident from measurements of the pH, soluble solids, sugar-acid ratios, and a number of the individual organic acids. / Land and Food Systems, Faculty of / Graduate
26

Infrared Studies of Anions of Organic Acids

Dyke, Maurice Arthur 08 1900 (has links)
The present work is a part of a systematic investigation of the frequency shifts in infrared absorption produced by changing to the anions carbonyl containing acidic compounds.
27

Characterization of cold-pressed flaxseed oils and products from their enzymatic transesterification with cinnamic and ferulic acids

Choo, Wee Sim, n/a January 2008 (has links)
The physicochemical characteristics of seven cold-pressed flaxseed oils sold in New Zealand were investigated for their fatty acid composition, tocopherol composition, moisture and volatile matter, free fatty acids, chlorophyll pigments, unsaponifiable matter, total phenolic acids and flavanoids, and colour. The seven cold-pressed flaxseed oils exhibited significant variations in their physicochemical characteristics. Quality of the oils in terms of oxidative stability was also investigated. Four oils were found to be within the limit of good stability oil indices, measured in terms of peroxide value, p-anisidine value, conjugated dienoic acids, specific extinction in ultraviolet spectrum, acid value and food oil sensor readings (to indicate total polar compounds). The role of minor constituents in the oxidative stability of two selected oils with different levels of fatty acid composition and minor constituents was investigated. Pan heating at 150�C caused loss of tocopherols, plastochromanol-8, phenolic acids, chlorophyll pigments, β-carotene and lutein and changes in the fatty acid composition. The pan-heated oils exceeded the limit of good stability oil indices using the measurement mentioned above except for acid value. The addition of α-tocopherol to the oils did not provide enhanced protection to the oils in accelerated aging of oil tests at 60�C. It was most likely that phenolic acids present in the oils played a dominant role in the oxidative stability of the oils. Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using a commercially available immobilized lipase B from Candida antarctica (Novozym 435) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using Electrospray Ionization-Mass Spectroscopy (ESI-MS). Separation and isolation of two classes of lipophilized products was also achieved using a solid phase extraction method developed in this study for further investigation into the structure-free radical scavenging activity. Free radical scavenging activity was determined using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) method. The polarity of the solvents proved important in determining the free radical scavenging activity of the substrates. Ferulic acid showed much higher free radical scavenging activity than cinnamic acid, which had limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the free radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the free radical scavenging activity. Although, compared with the lipophilized cinnamic acid product, the activity was lower. The free radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyldioleoylglycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient free radical scavenger than lipophilized cinnamic acid. Lipase-catalyzed transesterification of flaxseed oil with cinnamic and ferulic acids using Novozym 435 was conducted to evaluate whether the lipophilized products provided enhanced antioxidant activity in the oil. The lipophilized products were identified using ESI-MS and were examined for their free radical scavenging activity toward DPPH in ethanol and ethyl acetate. Ferulic acid showed the highest free radical scavenging activity among all substrates tested while cinnamic acid had negligible activity. The effect of esterification of cinnamic acid and ferulic acid with flaxseed oil was similar to that with triolein. Lipophilized ferulic acid was a better free radical scavenger as compared with lipophilized cinnamic acid and extended the naturally-occuring antioxidant capacity of the flaxseed oil. Lipophilized cinnamic acid did not provide much enhanced radical scavenging activity in the flaxseed oil as the presence of natural hydrophilic antioxidants in the oil had much greater radical scavenging activity. It may still be useful for unsaturated oils with a small amount of natural antioxidants in them. Lipophilized cinnamic and ferulic acids showed higher free radical scavenging activity when tested in a less polar solvent (ethyl acetate) whereas ferulic acid showed better activity in a more polar solvent (ethanol). These results indicate that the choice of solvent for the DPPH assay is critical in evaluating the free radical scavenging activity of substrates of differing polarity, and support previous observations by other authors that the solubility of an antioxidant in relation to the site of oxidation is an important factor for consideration in the use of antioxidants.
28

The solubility of Cr(III) and Cr(VI) compounds in soil and their availability to plants

Mandiwana, KL, Panichev, N, Kataeva, M, Siebert, S 20 July 2007 (has links)
The mystery surrounding high concentrations of Cr(III) in plants has been uncovered. It is attributed to the presence of low molecular weight organic acids (LMWOA) in soil in which the plants are growing. Apart from that, the factors influencing solubility of Cr(VI) in soil have also been investigated. It was found that the solubility of Cr(VI) species is governed by the presence of CO3 2− ions in a soil solution that resulted when atmospheric CO2 dissolves in soil–water. Concentrations of Cr(VI) and Cr(III) were determined in plants, collected on unpolluted soils in different geographical areas. It was found that the concentration of Cr(VI) in plants correlated with the soluble fraction of Cr(VI) in soil, while Cr(III) concentration in plants is limited by concentration LMWOA in soil. It can therefore be concluded that the high level of Cr(III) in plants is also due to the direct absorptions of the species from soil rich in organic acids.
29

The effects of organic acids and microcolony formation on the adhesion of meat spoilage organisms /

D'Aoust, Frédéric. January 1998 (has links)
Beef tendons were sectioned into 60 mum-thick slices (1cm 2) and deposited onto glass cover slips. These meat slices were flooded with a cell suspension of either Pseudomonas fluorescens, Enterobacter agglomerans, or Moraxella osloensis in distilled water and adhesion allowed to occur. The adhesion experiments were also conducted on agar-covered slides to evaluate the effect of the nature of the substratum on adhesion. The non-adherent organisms found on either surface tested (meat or agar) were removed by flushing liquid over the slide. The slides were then incubated in a moist atmosphere at 30°C. Once the presence of microcolonies had been established microscopically, the slides were mounted into flow chambers and the surface flushed with distilled water to ascertain the effects of bacterial proliferation on adhesion. In other experiments, the influence of acetic, citric, and lactic acid rinses on cell adhesion and subsequent cell proliferation was evaluated. Microcolony formation was shown to reduce the adhesion strength of Enterobacter agglomerans and, to a lesser extent, that of Moraxella osloensis while increasing that of Pseudomonas fluorescens. The probable determinant of adhesion strengths of microcolonies is exopolymer synthesis. A minimal decrease in bacterial adhesion and microcolony formation was observed with the use of organic acid rinses. The bactericidal activity and effect on bacterial proliferation increased with increasing concentration and rinse times of the organic acids. The extent of the adhesion reductions suggests that the preservation action of organic acids is due to cell death and not adhesion inhibition.
30

Characterization of cold-pressed flaxseed oils and products from their enzymatic transesterification with cinnamic and ferulic acids

Choo, Wee Sim, n/a January 2008 (has links)
The physicochemical characteristics of seven cold-pressed flaxseed oils sold in New Zealand were investigated for their fatty acid composition, tocopherol composition, moisture and volatile matter, free fatty acids, chlorophyll pigments, unsaponifiable matter, total phenolic acids and flavanoids, and colour. The seven cold-pressed flaxseed oils exhibited significant variations in their physicochemical characteristics. Quality of the oils in terms of oxidative stability was also investigated. Four oils were found to be within the limit of good stability oil indices, measured in terms of peroxide value, p-anisidine value, conjugated dienoic acids, specific extinction in ultraviolet spectrum, acid value and food oil sensor readings (to indicate total polar compounds). The role of minor constituents in the oxidative stability of two selected oils with different levels of fatty acid composition and minor constituents was investigated. Pan heating at 150�C caused loss of tocopherols, plastochromanol-8, phenolic acids, chlorophyll pigments, β-carotene and lutein and changes in the fatty acid composition. The pan-heated oils exceeded the limit of good stability oil indices using the measurement mentioned above except for acid value. The addition of α-tocopherol to the oils did not provide enhanced protection to the oils in accelerated aging of oil tests at 60�C. It was most likely that phenolic acids present in the oils played a dominant role in the oxidative stability of the oils. Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using a commercially available immobilized lipase B from Candida antarctica (Novozym 435) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using Electrospray Ionization-Mass Spectroscopy (ESI-MS). Separation and isolation of two classes of lipophilized products was also achieved using a solid phase extraction method developed in this study for further investigation into the structure-free radical scavenging activity. Free radical scavenging activity was determined using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) method. The polarity of the solvents proved important in determining the free radical scavenging activity of the substrates. Ferulic acid showed much higher free radical scavenging activity than cinnamic acid, which had limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the free radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the free radical scavenging activity. Although, compared with the lipophilized cinnamic acid product, the activity was lower. The free radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyldioleoylglycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient free radical scavenger than lipophilized cinnamic acid. Lipase-catalyzed transesterification of flaxseed oil with cinnamic and ferulic acids using Novozym 435 was conducted to evaluate whether the lipophilized products provided enhanced antioxidant activity in the oil. The lipophilized products were identified using ESI-MS and were examined for their free radical scavenging activity toward DPPH in ethanol and ethyl acetate. Ferulic acid showed the highest free radical scavenging activity among all substrates tested while cinnamic acid had negligible activity. The effect of esterification of cinnamic acid and ferulic acid with flaxseed oil was similar to that with triolein. Lipophilized ferulic acid was a better free radical scavenger as compared with lipophilized cinnamic acid and extended the naturally-occuring antioxidant capacity of the flaxseed oil. Lipophilized cinnamic acid did not provide much enhanced radical scavenging activity in the flaxseed oil as the presence of natural hydrophilic antioxidants in the oil had much greater radical scavenging activity. It may still be useful for unsaturated oils with a small amount of natural antioxidants in them. Lipophilized cinnamic and ferulic acids showed higher free radical scavenging activity when tested in a less polar solvent (ethyl acetate) whereas ferulic acid showed better activity in a more polar solvent (ethanol). These results indicate that the choice of solvent for the DPPH assay is critical in evaluating the free radical scavenging activity of substrates of differing polarity, and support previous observations by other authors that the solubility of an antioxidant in relation to the site of oxidation is an important factor for consideration in the use of antioxidants.

Page generated in 0.0428 seconds