Spelling suggestions: "subject:"[een] PARALLEL ALGORITHMS"" "subject:"[enn] PARALLEL ALGORITHMS""
21 |
A distributed reconstruction of EKG signalsCordova, Gabriel, January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
|
22 |
Parallel computations in Quantum Monte Carlo simulation of the van der Waals cluster vibrational eigenstates /Li, Haisen. January 2004 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2004. / Typescript. Includes bibliographical references (leaves 90-92).
|
23 |
Insights from the parallel implementation of efficient algorithms for the fractional calculusBanks, Nicola E. January 2015 (has links)
This thesis concerns the development of parallel algorithms to solve fractional differential equations using a numerical approach. The methodology adopted is to adapt existing numerical schemes and to develop prototype parallel programs using the MatLab Parallel Computing Toolbox (MPCT). The approach is to build on existing insights from parallel implementation of ordinary differential equations methods and to test a range of potential candidates for parallel implementation in the fractional case. As a consequence of the work, new insights on the use of MPCT for prototyping are presented, alongside conclusions and algorithms for the effective implementation of parallel methods for the fractional calculus. The principal parallel approaches considered in the work include: - A Runge-Kutta Method for Ordinary Differential Equations including the application of an adapted Richardson Extrapolation Scheme - An implementation of the Diethelm-Chern Algorithm for Fractional Differential Equations - A parallel version of the well-established Fractional Adams Method for Fractional Differential Equations - The adaptation for parallel implementation of Lubich's Fractional Multistep Method for Fractional Differential Equations An important aspect of the work is an improved understanding of the comparative diffi culty of using MPCT for obtaining fair comparisons of parallel implementation. We present details of experimental results which are not satisfactory, and we explain how the problems may be overcome to give meaningful experimental results. Therefore, an important aspect of the conclusions of this work is the advice for other users of MPCT who may be planning to use the package as a prototyping tool for parallel algorithm development: by understanding how implicit multithreading operates, controls can be put in place to allow like-for-like performance comparisons between sequential and parallel programs.
|
24 |
Neural computation of all eigenpairs of a matrix with real eigenvaluesPerlepes, Serafim Theodore 01 January 1999 (has links)
No description available.
|
25 |
Scalable Algorithms for Delaunay Mesh GenerationSlatton, Andrew G. January 2014 (has links)
No description available.
|
26 |
Algorithms for the degree-constrained minimum spanning tree and the hierarchical clustering problems using the nearest-neighbor techniquesMao, Li Jen 01 January 1999 (has links)
No description available.
|
27 |
Parallel algorithms for the molecular conformation problemRajan, Kumar 01 January 1999 (has links)
No description available.
|
28 |
HPC-based Parallel Algorithms for Generating Random Networks and Some Other Network Analysis ProblemsAlam, Md Maksudul 06 December 2016 (has links)
The advancement of modern technologies has resulted in an explosive growth of complex systems, such as the Internet, biological, social, and various infrastructure networks, which have, in turn, contributed to the rise of massive networks. During the past decade, analyzing and mining of these networks has become an emerging research area with many real-world applications. The most relevant problems in this area include: collecting and managing networks, modeling and generating random networks, and developing network mining algorithms. In the era of big data, speed is not an option anymore for the effective analysis of these massive systems, it is an absolute necessity. This motivates the need for parallel algorithms on modern high-performance computing (HPC) systems including multi-core, distributed, and graphics processor units (GPU) based systems. In this dissertation, we present distributed memory parallel algorithms for generating massive random networks and a novel GPU-based algorithm for index searching.
This dissertation is divided into two parts. In Part I, we present parallel algorithms for generating massive random networks using several widely-used models. We design and develop a novel parallel algorithm for generating random networks using the preferential-attachment model. This algorithm can generate networks with billions of edges in just a few minutes using a medium-sized computing cluster. We develop another parallel algorithm for generating random networks with a given sequence of expected degrees. We also design a new a time and space efficient algorithmic method to generate random networks with any degree distributions. This method has been applied to generate random networks using other popular network models, such as block two-level Erdos-Renyi and stochastic block models. Parallel algorithms for network generation pose many nontrivial challenges such as dependency on edges, avoiding duplicate edges, and load balancing. We applied novel techniques to deal with these challenges. All of our algorithms scale very well to a large number of processors and provide almost linear speed-up.
Dealing with a large number of networks collected from a variety of fields requires efficient management systems such as graph databases. Finding a record in those databases is very critical and typically is the main bottleneck for performance. In Part II of the dissertation, we develop a GPU-based parallel algorithm for index searching. Our algorithm achieves the fastest throughput ever reported in the literature for various benchmarks. / Ph. D. / The advancement of modern technologies has resulted in an explosive growth of complex systems, such as the Internet, biological, social, and various infrastructure networks, which have, in turn, contributed to the rise of massive networks. During the past decade, analyzing and mining of these networks has become an emerging research area with many real-world applications. The most relevant problems in this area include: collecting and managing networks, modeling and generating random networks, and developing network mining algorithms. As the networks are massive in size, we need faster algorithms for the quick and effective analysis of these systems. This motivates the need for parallel algorithms on modern high-performance computing (HPC) based systems. In this dissertation, we present HPC-based parallel algorithms for generating massive random networks and managing large scale network data.
This dissertation is divided into two parts. In Part I, we present parallel algorithms for generating massive random networks using several widely-used models, such as the preferential attachment model, the Chung-Lu model, the block two-level Erdős-Rényi model and the stochastic block model. Our algorithms can generate networks with billions of edges in just a few minutes using a medium-sized HPC-based cluster. We applied novel load balancing techniques to distribute workloads equally among the processors. As a result, all of our algorithms scale very well to a large number of processors and provide almost linear speed-up. In Part II of the dissertation, we develop a parallel algorithm for finding records by given keys. Dealing with a large number of network data collected from a variety of fields requires efficient database management systems such as graph databases. Finding a record in those databases is very critical and typically is the main bottleneck for performance. Our algorithm achieves the fastest data lookup throughput ever reported in the literature for various benchmarks.
|
29 |
Exploiting parallelism in decomposition methods for constraint satisfactionAkatov, Dmitri January 2010 (has links)
Constraint Satisfaction Problems (CSPs) are NP-complete in general, however, there are many tractable subclasses that rely on the restriction of the structure of their underlying hypergraphs. It is a well-known fact, for instance, that CSPs whose underlying hypergraph is acyclic are tractable. Trying to define “nearly acyclic” hypergraphs led to the definition of various hypergraph decomposition methods. An important member in this class is the hypertree decomposition method, introduced by Gottlob et al. It possesses the property that CSPs falling into this class can be solved efficiently, and that hypergraphs in this class can be recognized efficiently as well. Apart from polynomial tractability, complexity analysis has shown, that both afore-mentioned problems lie in the low complexity class LOGCFL and are thus moreover efficiently parallelizable. A parallel algorithm has been proposed for the “evaluation problem”, however all algorithms for the “recognition problem” presented to date are sequential. The main contribution of this dissertation is the creation of an object oriented programming library including a task scheduler which allows the parallelization of a whole range of computational problems, fulfilling certain complexity-theoretic restrictions. This library merely requires the programmer to provide the implementation of several classes and methods, representing a general alternating algorithm, while the mechanics of the task scheduler remain hidden. In particular, we use this library to create an efficient parallel algorithm, which computes hypertree decompositions of a fixed width. Another result of a more theoretical nature is the definition of a new type of decomposition method, called Balanced Decompositions. Solving CSPs of bounded balanced width and recognizing such hypergraphs is only quasi-polynomial, however still parallelizable to a certain extent. A complexity-theoretic analysis leads to the definition of a new complexity class hierarchy, called the DC-hierarchy, with the first class in this hierarchy, DC1 , precisely capturing the complexity of solving CSPs of bounded balanced width.
|
30 |
Aplicações de computação paralela em otimização contínua / Applications of parallel computing in continuous optimizationAbrantes, Ricardo Luiz de Andrade 22 February 2008 (has links)
No presente trabalho, estudamos alguns conceitos relacionados ao desenvolvimento de programas paralelos, algumas formas de aplicar computação paralela em métodos de otimização contínua e dois métodos que envolvem o uso de otimização. O primeiro método que apresentamos, chamado PUMA (Pointwise Unconstrained Minimization Approach), recupera constantes óticas e espessuras de filmes finos a partir de valores de transmitância. O problema de recuperação é modelado como um problema inverso e resolvido com auxílio de um método de otimização. Através da paralelização do PUMA viabilizamos a recuperação empírica de constantes e espessuras de sistemas compostos por até dois filmes sobrepostos. Relatamos aqui os resultados obtidos e discutimos o desempenho da versão paralela e a qualidade dos resultados obtidos. O segundo método estudado tem o objetivo de obter configurações iniciais de moléculas para simulações de dinâmica molecular e é chamado PACKMOL. O problema de obter uma configuração inicial de moléculas é modelado como um problema de empacotamento e resolvido com o auxílio de um método de otimização. Construímos uma versão paralela do PACKMOL e mostramos os ganhos de desempenho obtidos com a paralelização. / In this work we studied some concepts of parallel programming, some ways of using parallel computing in continuous optimization methods and two optimization methods. The first method we present is called PUMA (Pointwise Unconstrained Minimization Approach), and it retrieves optical constants and thicknesses of thin films from transmitance data. The problem of retrieve thickness and optical constants is modeled as an inverse problem and solved with aid of an optimization method. Through the paralelization of PUMA we managed to retrieve optical constants and thicknesses of thin films in structures with one and two superposed films. We describe some results and discuss the performance of the parallel PUMA and the quality of the retrievals. The second studied method is used to build an initial configuration of molecules for molecular dynamics simulations and it is called PACKMOL. The problem of create an initial configuration of molecules is modeled as a packing problem and solved with aid of an optimization method. We developed a parallel version of PACKMOL and we show the obtained performance gains.
|
Page generated in 0.0483 seconds