• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] ABSORVEDOR COM BANDA ULTRA LARGA BASEADO EM ESTRUTURAS METAMATERIAIS E O MÉTODO DE EXTRAÇÃO DE PARÂMETROS / [en] AN ULTRAWIDEBAND METAMATERIAL ABSORBER AND A PARAMETER RETRIEVAL METHOD

JOSE BRUNO OLIVEIRA DE ARAUJO 13 December 2019 (has links)
[pt] Este trabalho apresenta a idealização, caracterização e medições de um absorvedor metamaterial ultrafino com uma banda ultra larga, baseado em espiras quadradas arranjadas periodicamente. O circuito equivalente dessa estrutura é proposto para fornecer uma maior compreensão teórica. Os parâmetros desse circuito são extraídos utilizando um algoritmo baseado no método dos mínimos quadrados, usando uma abordagem direta, que pode ser aplicada aos absorvedores com banda larga em geral. O mecanismo de absorção da estrutura proposta é discutido e detalhado. Um dos resultados da simulação mostrou uma absortividade acima de 90 porcento de 11.4 até 20 GHz, cobrindo a banda Ku inteiramente tanto para a polarização TM quanto para a TE, e essa banda larga é confirmada pelas medições experimentais. Além disso, a espessura do absorvedor metamaterial proposto é lambda/16.4, considerando o maior comprimento de onda da banda de operação, e apresenta estabilidade angular até 50 graus Celsius. Ademais, o uso do absorvedor proposto para redução da seção transversal de radar em antenas de microfita é investigado e reduções até 12.8 dB são obtidas, e uma parede absorvedora é apresentada para diminuição do acoplamento mútuo em conjuntos de antenas. / [en] This work presents the design, characterization, and measurement of an ultrathin and ultrawideband metamaterial absorber based on periodicallyarranged metallic square spiral and its equivalent circuit is proposed to provide a theoretical insight. The parameters of the equivalent circuit are extracted using an algorithm based on the least-square method and using a straightforward approach, which can be applied to broadband absorbers in general. The mechanism of absorption of the proposed structure is discussed and detailed. One of the simulated results showed an absorptivity of more than 90 percent from 11.4 to 20.0 GHz, covering the Ku band for TM as well as TE polarization, and this broadband feature is confirmed by the experimental measurement. Furthermore, the proposed metamaterial absorber is lambda/16.4 thick at the lowest frequency of absorption and presents angle stability up to 50 Celsius degrees. In addition, the usage of the proposed absorber to the radar crosssection reduction in microstrip antennas is investigated and reductions up to 12.8 dB are achieved, and an absorber wall is presented to decrease the mutual coupling in antenna arrays.
2

Nanophotonics of Plasmonic and Two-Dimensional Metamaterials

Roccapriore, Kevin M 08 1900 (has links)
Various nanostructured materials display unique and interesting optical properties. Specific nanoscale objects discussed in an experimental perspective in this dissertation include optical metamaterials, surface plasmon sensors, and two-dimensional materials. These nanoscale objects were fabricated, investigated optically, and their applications are assessed. First, one-dimensional magnetic gratings were studied, followed by their two-dimensional analog, the so-called "fishnet." Both were fabricated, characterized, and their properties, such as waveguiding modes, are examined. Interestingly, these devices can exhibit optical magnetism and even negative refraction; however, their general characterization at oblique incidence is challenging due to diffraction. Here, a new method of optical characterization of metamaterials which takes into account diffraction is presented. Next, surface plasmon resonance (SPR) was experimentally used in two schemes, for the first time, to determine the transition layer characteristics between a metal and dielectric. The physics of interfaces, namely the singularity of electric permittivity and how it can be electrically shifted, becomes clearer owing to the extreme sensitivity of SPR detection mechanisms. Finally, ultra-thin two-dimensional semiconducting materials had their radiative lifetime analyzed. Their lifetimes are tuned both by number of atomic layers and applied voltage biasing across the surface, and the changes in lifetime are suspected to be due to quenching or enhancement of non-radiative process rates.

Page generated in 0.0359 seconds