• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 242
  • 126
  • 50
  • 31
  • 8
  • 7
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 536
  • 536
  • 123
  • 108
  • 90
  • 60
  • 59
  • 52
  • 44
  • 41
  • 40
  • 39
  • 39
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of a structural phase transition : the R-point instability in KMnF₃

Nicholls, Ursula Joy January 1987 (has links)
No description available.
2

Surface reconstruction phase transition examined by a mirror electron microscope low energy electron diffraction system

Foster, M. S. January 1984 (has links)
No description available.
3

Phenomenology and simulations of active fluids

Tjhung, Elsen January 2013 (has links)
Active fluids are an interesting new class of non-equilibrium systems in physics. In such fluids, the system is forced out of equilibrium by the individual active particles - in contrast to driven systems where the system is forced out of equilibrium by some external forces. Some biological examples of active fluids are bacterial suspensions and actomyosin solutions inside eukaryotic cells. In the case of bacterial suspensions, the fluid is stirred internally by the swimming bacteria and as a consequence of this, active fluids can have some interesting physics of their own such as hydrodynamic instabilities and spontaneous symmetry breaking. Here, in particular, we study how such instabilities may arise and how they may lead to a non-equilibrium steady state. We also study numerically a droplet of active matter as a simple representation of cell extract comprising actomyosin solution bounded by a cell membrane. It is widely believed that cell motility is driven only by actin polymerization pushing against the cell membrane. However, we show that even in the absence of actin polymerization, actin-myosin contraction alone can also generate a unidirectional motion. This happens due to the spontaneous breakdown of a discrete symmetry at large enough activity (i.e. actomyosin contraction). This non-equilibrium phase transition from stationary to motile state is somewhat similar to the second order phase transition in equilibrium thermodynamics. Finally, we studied the behaviour of an active droplet on a two-dimensional surface to mimic cell crawling. Whereas cell migration in 3D environment maybe driven mainly by actin-myosin contraction (described above), cell crawling on a 2D surface is driven mainly by actin polymerisation. Here we find that localised actin polymerisation can cause protrusion in the cell membrane which is qualitatively similar to lamellipodium formation in cell crawling.
4

DEGRADATION MECHANISM OF PEROVSKITE SOLAR CELLS

Wang, Ryan Taoran January 2021 (has links)
The perovskite solar cells have attracted much attention recently due to their low fabrication cost and high power conversion efficiency. However, the instability of such devices remained a serious challenge, which is yet to be resolved despite many attempts. In this thesis, the moisture degradation mechanism has been uncovered. It was found that the perovskite structure can be reconstructed when annealed at around 90℃, which leads to a reversible device of a much higher device lifetime. Following the experimental explorations, modelling work has also been conducted to simulate the water diffusion during the degradation and recovery. It was found that the moisture diffusion was initiated at the surface imperfection, where the activation energy for diffusion can be reduced. Based on these discoveries, a fresh structural negotiation method has been proposed to obtain a stable FAPbI3 phase of a suitable bandgap for photovoltaics, which showed a reduced Gibbs free energy of 0.12eV compared with the δ phase. In addition, the activation energy for such phase transition was calculated to be 0.45eV, meaning that the discovered phase is protected by both thermodynamics and kinetics. All this opens an unprecedented avenue in perovskite research, which will hopefully be of intrinsic interest to the broad materials research community as well. / Thesis / Doctor of Philosophy (PhD)
5

Synthesis and Investigation on Phase Transition of BaTiO3 and Cr3+-Doped BaTiO3 Nanocrystals

Ju, Ling 09 1900 (has links)
Various sizes of BaTiO3 and Cr3+-doped BaTiO3 nanocrystals were synthesized through hydrothermal and solvothermal methods. The applied solvents water, ethanol and benzyl alcohol lead to nanoparticles with average sizes of 200, 10 and 5 nm, respectively. The nanocrystals were treated with trioctylphosphine oxide to remove surface-bound dopant ions, and colloidal free-standing nanocrystals smaller than 10 nm were obtained by using oleic acid as a dispersant surfactant. The tetragonal-to-cubic phase transition at room temperature of undoped nanocrystalline BaTiO3 has been investigated by powder X-ray diffraction (XRD) and Raman spectroscopy. The size effect of nanoscale BaTiO3 is observed that the tetragonal phase becomes unstable with decreasing particle size. However, we found that ferroelectric tetragonal structure persists to some extent even for particles at 5 nm. The successful substitution of Ti4+ with Cr3+ in the host BaTiO3 lattice for all three sizes was achieved at different Cr3+/Ti4+ molar ratios. The dopant is found to significantly promote the phase transition, even dominate over the size effect. Ligand-field electronic absorption spectroscopy suggests a subtle change of the octahedral coordinated Cr3+ environments between particles at 5 and 10 nm, confirming the structural differences. Preliminary magnetic measurement indicates Cr3+ as isolated paramagnetic ions without any chromium clusters or oxides. The ability to rationally manipulate the ferroelectric properties of BaTiO3 by size and dopants, in combination with possible ferromagnetism induced by incorporating paramagnetic transition metal ions, opens up new opportunities for modern multiferroic materials in information storage technology.
6

Synthesis and Investigation on Phase Transition of BaTiO3 and Cr3+-Doped BaTiO3 Nanocrystals

Ju, Ling 09 1900 (has links)
Various sizes of BaTiO3 and Cr3+-doped BaTiO3 nanocrystals were synthesized through hydrothermal and solvothermal methods. The applied solvents water, ethanol and benzyl alcohol lead to nanoparticles with average sizes of 200, 10 and 5 nm, respectively. The nanocrystals were treated with trioctylphosphine oxide to remove surface-bound dopant ions, and colloidal free-standing nanocrystals smaller than 10 nm were obtained by using oleic acid as a dispersant surfactant. The tetragonal-to-cubic phase transition at room temperature of undoped nanocrystalline BaTiO3 has been investigated by powder X-ray diffraction (XRD) and Raman spectroscopy. The size effect of nanoscale BaTiO3 is observed that the tetragonal phase becomes unstable with decreasing particle size. However, we found that ferroelectric tetragonal structure persists to some extent even for particles at 5 nm. The successful substitution of Ti4+ with Cr3+ in the host BaTiO3 lattice for all three sizes was achieved at different Cr3+/Ti4+ molar ratios. The dopant is found to significantly promote the phase transition, even dominate over the size effect. Ligand-field electronic absorption spectroscopy suggests a subtle change of the octahedral coordinated Cr3+ environments between particles at 5 and 10 nm, confirming the structural differences. Preliminary magnetic measurement indicates Cr3+ as isolated paramagnetic ions without any chromium clusters or oxides. The ability to rationally manipulate the ferroelectric properties of BaTiO3 by size and dopants, in combination with possible ferromagnetism induced by incorporating paramagnetic transition metal ions, opens up new opportunities for modern multiferroic materials in information storage technology.
7

The Study on The Phase Transition of The Antiferromagnetic-Torsional XY Model

Ding, Kueng-Long 18 July 2003 (has links)
ABSTRACT The phase transition of the antiferromagnetic-torsional XY model is studied with molecular dynamics. In the process of releasing energy, we find a minimally stable state. The minimally stable state indicates the process of disordered state to ordered state when the 2nd phase transition was derived. The temperature of phase transition for the iferromagnetic-torsional XY model is lower than that for the antiferromagnetic XY model. A increase of the coefficient J2 will delay the temperature of phase transition for the antiferromagnetic-torsional XY model .
8

Boundary effects in nematic liquid crystal layers

Mottram, N. J. January 1996 (has links)
No description available.
9

Computer simulation of materialsunder extreme conditions

Lukinov, Tymofiy January 2016 (has links)
Extreme conditions allow us to reveal unusual material properties. At the same time an experimental approach is di-cult under such conditions. Capabilities of a theoretical approach based on simplied models are limited. This explainsa wide application of computer simulations at extreme conditions. My thesis is concerned with computer simulations undersuch a conditions. I address such problems as melting, solidsolid phase transitions, shockwave impact on material properties and chemical reactions under extreme conditions. We addressed these problems to facilitate simulations of phase transitions to provide some interpretation of experimental data andexplain enigmatic phenomena in interior of the Earth. / <p>QC 20160615</p>
10

Magnetic and crystal structure transition on La0.2Ho0.8Mn2O5 oxide

Yu, Chun-cheng 13 February 2009 (has links)
La doped HoMn2O5 in studying the influence of the local structure distortion on the magnetic transition has been investigated systematically. It is found that by doping of La ions in a proper percentage, 0.1≤x≤0.2, the formation of the possible impurity RMnO3 (113) phase could be suppressed; single phases of LaxHo1-xMn2O5 (0.1≤x≤0.2) can be formed in one atmosphere of flowing oxygen. For x=0.2, an weak ferromagnetic transition on top of the paramagnetic background appears at 150K and saturated at 75K, which implies that the compound undergoes a ferromagnetic to antiferromagnetic transition. In addition, the lattice didn¡¦t appear a huge phase transition at low temperature, it¡¦s observed local distortion behavior within 100~150K, and back to normal structure as high temperature ones. It¡¦s convinced that will be associated with the magnetic properties, which need further examination and experiment.

Page generated in 0.0328 seconds