• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] COMPORTAMENTO ESTATÍSTICO DE PRODUTOS TORTOS: DERIVADA SCHWARZIANA E LEIS DO ARCO-SENO / [en] STATISTICAL BEHAVIOR OF SKEW PRODUCTS: SCHWARZIAN DERIVATIVE AND ARC-SINE LAWS

RAUL STEVEN RODRIGUEZ CHAVEZ 11 June 2024 (has links)
[pt] Consideramos produtos tortos sobre shifts de Bernoulli, cuja dinâmica fibrada é dada por difeomorfismos do intervalo. Estudamos o comportamento previsível e/ou histórico destes sistemas, referindo-nos à convergência e/ou não convergência, da média de Birkhoff, respectivamente. Utilizamos a derivada Schwarziana das fibras e a lei do arco-seno para identificar condições nas quais esses produtos tortos apresentam esses tipos de comportamento. Identificamos distintos tipos de comportamento em relação à derivada Schwarziana. Quando a derivada Schwarziana é negativa, o produto torto tem bacias entrelaçadas. Por outro lado, quando a derivada Schwarziana é positiva, o produto torto possui uma medida física. Finalmente, quando a derivada Schwarziana é nula, o produto torto tem comportamento histórico. No último cenário, estabelecemos uma conexão entre o comportamento histórico e a lei do arco-seno que nos permite obter resultados em outras configurações independentes do sinal da derivada Schwarziana. / [en] We consider skew products over Bernoulli shifts, whose fibred dynamics is given by diffeomorphisms of the interval. We study the predictable and/or historical behavior, referring to convergence and/or non-convergence, of the Birkhoff average, respectively. We employ the Schwarzian derivative of the fiber maps and the arc-sine law to identify conditions under which these skew products exhibit these types of behavior. We identify distinct types of behavior according to the Schwarzian derivative. When the Schwarzian derivative is negative, the skew product has intermingled basins. Conversely, when the Schwarzian derivative is positive, the skew product has a physical measure. Finally, when the Schwarzian derivative is zero, the skew product has historical behavior. In the latter scenario, we establish a connection between historical behavior and the arc-sine law that allows us to obtain results in other settings independent of the sign of the Schwarzian derivative.

Page generated in 0.0444 seconds