• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 42
  • 22
  • 3
  • 2
  • 1
  • Tagged with
  • 135
  • 135
  • 33
  • 32
  • 31
  • 29
  • 24
  • 23
  • 17
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Advanced Scanning Probe Techniques for the Study of Polymer Surfaces

Agapov, Rebecca L. 04 December 2012 (has links)
No description available.
62

REINFORCEMENT OF MELT-BLEND COMPOSITES; POLYMER-FILLER INTERACTIONS, PHASE BEHAVIOR, AND STRUCTURE-PROPERTY RELATIONSHIPS

Henry, Milliman W. January 2011 (has links)
No description available.
63

On-line Fourier Transform Infrared Spectroscopy System for Extrusion-Based Process Analysis.

Barros, Lucivan Pereira, Junior 25 January 2022 (has links)
No description available.
64

Stability and Morphological Evolution in Polymer/Nanoparticle Bilayers and Blends Confined to Thin Film Geometries

Paul, Rituparna 13 September 2007 (has links)
Thin film bilayers and blends composed of polymers and nanoparticles are increasingly important for technological applications that range from space survivable coatings to novel drug delivery systems. Dewetting or spontaneous hole formation in amorphous polymer films and phase separation in multicomponent polymer films can hinder the stability of these systems at elevated temperatures. Hence, fundamental understanding of dewetting and phase separation in polymer/nanoparticle bilayer and blend films is crucial for controlling transport and thermomechanical properties and surface morphologies of these systems. This dissertation provides studies on morphological evolution driven by phase separation and/or dewetting in model polymer/nanoparticle thin film bilayers and blends at elevated temperatures. Morphological evolution in dewetting bilayers of poly(t-butyl acrylate) (PtBA) or polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP) is explored at elevated temperatures. The results demonstrate unique dewetting morphologies in both PtBA/TPP and PS/TPP bilayers that are significantly different from those typically observed in dewetting polymer/polymer bilayers. Upon annealing the PtBA/TPP bilayers at 95°C, a two-step dewetting process is observed. PtBA immediately diffuses into the upper TPP layer leading to hole formation and subsequently the holes merge to form interconnected rim structures in the upper TPP layer. Dewetting of both the TPP and PtBA layers at longer annealing times leads to the evolution of scattered holes containing TPP-rich, fractal aggregates. The fractal dimensions of the TPP-rich, fractal aggregates are ~2.2 suggesting fractal pattern formation via cluster-cluster aggregation. Dewetting in PS/TPP bilayers also proceeds via a two-step process; however, the observed dewetting morphologies are dramatically different from those observed in PtBA/TPP bilayers. Cracks immediately form in the upper TPP layer during annealing of PS/TPP bilayers at 200°C. With increasing annealing times, the cracks in the TPP layer act as nucleation sites for dewetting and aggregation of the TPP layer and subsequent dewetting of the underlying PS layer. Complete dewetting of both the TPP and PS layers results in the formation of TPP encapsulated PS droplets. Phase separation in PtBA/TPP thin film blends is investigated as functions of annealing temperature and time. The PtBA/TPP thin film blend system exhibits an upper critical solution temperature (LCST) phase diagram with a critical composition and temperature of 60 wt% PtBA and ~70°C, respectively. Spinodal decomposition (SD) is observed for 60 wt% PtBA blend films and off-critical SD is seen for 58 and 62 wt% PtBA blend films. The temporal evolution of SD in 60 wt% PtBA blend films is also explored. Power law scaling for the characteristic wavevector with time (q ~ t^n with n = -1/4 to -1/3) during the early stages of phase separation yields to domain pinning at the later stages for films annealed at 75, 85, and 95°C. In contrast, domain growth is instantly pinned for films annealed at 105°C. Our work provides an important first step towards understanding how nanoparticles affect polymer thin film stability and this knowledge may be utilized to fabricate surfaces with tunable morphologies via controlled dewetting and/or phase separation. / Ph. D.
65

Phase Behavior of Poly(Caprolactone) Based Polymer Blends As Langmuir Films at the Air/Water Interface

Li, Bingbing 26 March 2007 (has links)
Poly (caprolactone) (PCL) has been widely studied as a model system for investigating polymer crystallization. In this thesis, PCL crystallization along with other phase transitions in PCL-based polymer blends are studied as Langmuir films at the air/water (A/W) interface. In order to understand the phase behavior of PCL-based blends, surface pressure induced crystallization of PCL in single-component Langmuir monolayers was first studied by Brewster angle microscopy (BAM). PCL crystals observed during film compression exhibit butterfly-shapes. During expansion of the crystallized film, polymer chains detach from the crystals and diffuse back into the monolayer as the crystals "melt". Electron diffraction on Langmuir-Schaefer films suggests that the lamellar crystals are oriented with the chain axes perpendicular to the substrate surface, while atomic force microscopy (AFM) reveals a crystal thickness of ~ 7.6 nm. In addition, the competition between lower segmental mobility and a greater degree of undercooling with increasing molar mass produces a maximum average growth rate at intermediate molar mass. PCL was blended with poly(t-butyl acrylate) (PtBA) to study the influence of PtBA on the morphologies of PCL crystals grown in monolayers. For PCL-rich blends, BAM studies reveal dendritic morphologies of PCL crystals. The thicknesses of the PCL dendrites are ~ 7-8 nm. BAM studies during isobaric area relaxation experiments at different surface pressure reveal morphological transitions from highly branched dendrites, to six-arm dendrites, four-arm dendrites, seaweedlike crystals, and distorted rectangular crystals. In contrast, PCL crystallization is suppressed in PtBA-rich blend films. For immiscible blends of PCL and polystyrene (PS) with intermediate molar masses as Langmuir films, the surface concentration of PCL is the only factor influencing surface pressure below the collapse transition. For PS-rich blends, both BAM and AFM studies reveal that PS nanoparticle aggregates formed at very low surface pressure form networks during film compression. For PCL-rich blends, small PS aggregates serve as heterogeneous nucleation centers for the growth of PCL crystals. During film expansion, BAM images show a gradual change in the surface morphology from highly continuous networklike structures (PS-rich blends) to broken ringlike structures (intermediate composition) to small discontinuous aggregates (PCL-rich blends). / Ph. D.
66

Non-Covalent Interactions in Polymeric Materials: From Ionomers to Polymer Blends

Ju, Lin 17 September 2019 (has links)
Conventional studies of ionomers have focused on ionomers bearing monovalent carboxylate or sulfonate pendant ions. There are relatively fewer studies on ionomers containing multivalent pendant ions, such as divalent phosphonate. In this dissertation, poly(ethylene terephthalate) (PET) and polystyrene ionomers with divalent phosphonate pendant ions have been synthesized, and the influence of divalent phosphonate pendant ions on the structure-morphology-property relationship has been compared to the ionomers with monovalent sulfonate pendant ions. The phosphonate groups generated a stronger physically crosslinked network in phosphonated ionomers as compared to sulfonated analogues. Higher plateau modulus, longer relaxation time, and significantly higher zero-shear viscosity were noted for phosphonated ionomers by a dynamic melt rheology study. Compared to the ionic aggregates generated from sulfonate groups, larger ionic aggregates with associated phosphonate groups have been observed. Furthermore, phosphonated ionomers displayed significantly higher glass transition temperatures than sulfonated ionomers. Ionomers have proven to be attractive, interfacially active compatibilizers for a number of polymer blend systems because of specific interactions that may develop between the ionic groups and complementary functional groups on other polar polymers within the blends. The successful compatibilization of polyester/polyamide blends (prepared by solution mixing and melt blending methods) using phosphonated PET ionomers as a minor-component compatibilizer has been demonstrated. The phase-separated polyamide domain dimension decreased with increasing mol % phosphonated monomers and this decrease was attributed to the specific interactions between the ionic phosphonate groups on the polyester ionomer and the amide linkages of polyamide. More importantly, the divalent phosphonate pendant ions are more effective at compatibilizing polyester/polyamide blends in comparison to the monovalent sulfonate pendant ions. Phosphonated PET ionomer-compatibilized polyester/polyamide blends required 6 times fewer ionic monomers to achieve domain dimension < 1 μm as compared to sulfonated PET-containing blends. Deep eutectic solvents (DES) have been reported to be the next generation solvents due to the superior biocompatibility, biodegradability, and sustainability as compared to ionic liquids. Two types of deep eutectic solvents, choline chloride : malic acid (ChCl:MA) and L-arginine : levulinic acid (Arg:LA), have been demonstrated as effective plasticizers for poly(vinyl alcohol) (PVOH) films. The plasticization effects on the properties of PVOH films were evidenced by lower crystallizability and improved film ductility. In addition, ChCl:MA deep eutectic solvent was more effective in plasticizing PVOH as compared to propylene glycol, one of the most widely studied alcohol-type plasticizers. From an applied perspective, DES-plasticized PVOH film is a promising candidate in the packaging market of heath-related products. / Doctor of Philosophy / Non-covalent interactions play an important role on the structure-morphology-property relationship of polymeric materials. Divalent phosphonate pendant ions provide interesting effects on the properties of ionomer and polymer blends as compared to the monovalent sulfonate pendant ions. Ionomers containing phosphonate pendant ions exhibit a significantly stronger physically crosslinked network as compared to sulfonated ionomers. Compared to monovalent sulfonate groups, the divalent phosphonate groups are more effective at compatibilizing polymer blends. Furthermore, the compatibilized poly(ethylene terephthalate)-based blends exhibit improved optical and oxygen barrier properties compared to the base blend without compatibilizer, signifying potential benefits in packaging industry. Poly(vinyl alcohol) is one of the most widely used packaging materials for food, medicine, detergent, etc. The incorporation of deep eutectic solvents as plasticizers significantly improved film ductility. In addition, the plasticization effect for choline chloride-based deep eutectic solvent is more profound than one of the most widely studied alcohol-type plasticizers, propylene glycol. The effective plasticization of poly(vinyl alcohol) using deep eutectic solvents confirmed the potential for future applications in the packaging market of health-related product.
67

Physical Aging of Miscible Polymer Blends

Robertson, Christopher G. 07 January 2000 (has links)
Physical aging measurements were performed on various polymeric glasses with the overriding goal of developing a better molecular picture of the nonequilibrium glassy state. To this end, aging-induced changes in mechanical properties and in the thermodynamic state (volume and enthalpy) were assessed for two different miscible polymer blends as a function of both composition and aging temperature. This investigation considered the physical aging behavior of blends containing atactic polystyrene (a-PS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) as well as mixtures of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN). Substantial attractive chemical interactions are characteristic of a-PS/PPO blends but are absent in PMMA/SAN blends. The distinct nature of interactions for these two blends resulted in differences in the compositional dependence of secondary relaxation intensity, segmental cooperativity which dictates glass formation kinetics, and density (prior to aging). The variation of volume relaxation rate with aging temperature and composition was interpreted based upon these characteristics for the two systems. In addition, a general relationship was uncovered which linked structural relaxation rates for amorphous polymers to their respective segmental relaxation characteristics (glass transition cooperativity or fragility), which in turn are well understood from a molecular standpoint. This work, therefore, established a basis for comprehending glassy state volume and enthalpy relaxation rates based upon molecular characteristics. Developing an understanding of the connection between the evolving thermodynamic state and mechanical property changes fared less well. The fact that the thermodynamic and mechanical properties can have very different relaxation time responses governing their changes in the nonequilibrium glassy state was clearly evident in an extensive study of the physical aging characteristics of an amorphous polyimide material. For some materials, interpretation of mechanical aging behavior was obscured by thermorheological complexity arising due to overlap of a secondary relaxation with the main chain softening dispersion. / Ph. D.
68

Understanding the role of kinetic parameters on the crystallization of miscible semicrystalline polymer blends

Huang, Jiang 10 November 2005 (has links)
This dissertation discusses results of crystallization kinetic, morphology and scattering studies on miscible semi crystalline blends of poly(pivalolactone)/ poly(vinylidene fluoride)(pPVLIPVF₂) and poly(pivalolactone)/poly(vinylidene fluoride <i>co</i>- tetrafluoroethylene)(95-5) (PPVL/P(VF2-TFE)(95-5)) prepared by solution blending. The spherulitic growth rates of the α-phase PPVL from miscible blends with PVF₂ or P(VF₂- TFE)(95-5) were measured by polarized optical microscopy as a function of blend composition and isothermal crystallization temperature, Tx, between 160°C and 215.5°C. The PPVL weight fraction in the blends ranged from 100 to 10 wt%. Using the Lauritzen-Hoffman kinetic theory of polymer crystal growth, the equilibrium melting temperatures of the α-phase PPVL in both the PPVL/PVF₂ and the PPVL/P(VF₂-TFE)(95-5) blends have been determined, for the first time, directly from the spherulitic growth rate data. Analysis of the composition dependence of the nucleation constant, Kg suggests that the α-phase PPVL crystal/melt lateral interface free energy, Ï , in the blends decreases markedly with increasing PVF₂ or P(VF₂-TFE)(95-5) concentration. / Ph. D.
69

Étude et mise au point d'un procédé d'élaboration de mélanges à base de polyamides combinant un pilote de polycondensation et des mélangeurs statiques / Study and design of a process for the elaboration of polyamide blends coupling a polycondensation pilot plant with static mixers

Leblanc, Jonathan 16 October 2008 (has links)
Ces travaux de recherche portent sur le développement d’un procédé permettant de mélanger, directement en sortie de polycondensation, du polyamide fondu avec d’autres polymères immiscibles en tant qu’additifs. Ce procédé se distingue ainsi des méthodes d’élaboration conventionnelles pour lesquelles une fusion préalable des polymères est nécessaire. L’étude concerne le mélange de polymères de viscosités très différentes (polyamide 66 et polyéthylène glycol) et le mélange de polymères de viscosités similaires (polyamide 66 et copolymère d’éthylène propylène, en présence ou non d’un agent d’interface : polypropylène greffé par de l’anhydride maléique).Une première partie de ce travail a consisté à caractériser la dispersion de ces mélanges élaborés selon des procédés conventionnels. Ce travail a conduit à développer un modèle reliant la taille de la phase dispersée aux principaux paramètres opératoires de chaque procédé, pour le cas rarement recensé dans la littérature, des mélanges de polymères de viscosités très différentes.La seconde partie a été consacrée à la conception et à la réalisation d’une installation constituée d’un pilote de polycondensation équipé, en sortie de réacteurs, d’un dispositif de mélange reposant sur la technologie des mélangeurs statiques. Son fonctionnement a ensuite été éprouvé pour les deux mélanges considérés, grâce des expériences qui ont permis d’analyser l’influence de différentes conditions opératoires sur la morphologie des mélanges générés. La comparaison des résultats obtenus à ceux issus des procédés conventionnels, a alors permis de préciser les performances et les limites du procédé développé dans cette étude / The aim of this work is to develop a process, which enables to blend polyamide in molten state with others polymers, directly at the outlet of a polycondensation reactor. Contrary to currently industrial processes, no remelting stage is needed in this one. The study has been carried out with polyamide 66 / polyethylene glycol blends (products with very different viscosities) and with polyamide 66 / ethylene propylene blends (products with similar viscosities), with or without polypropylene-graft-maleic-anhydride as interfacial agent. The first part of this work deals with the characterization of the dispersions obtained for these blends when their elaborations are carried out using conventional processes. Only few studies are available on blends, which exhibit a large difference between components viscosity. This work led us to develop a model to correlate, in this case, the dispersed phase size to the main operating conditions of each processes.The second part is dedicated to the design and the realization of an experimental installation, which is composed of polycondensation plant equipped, at the outlet of reactors, with a blending device based on static mixers technology. Its operation has been tested and experiments have been carried out in order to study the influence of the different processing parameters on blends morphology. The comparison of the results with those previously obtained using conventional processes allowed then to precise the performances and the limits of the process developed in this study
70

Estudo da influência da radiação gama nas propriedades mecânicas e térmicas de \"elastômeros termoplásticos\" blendas de poli (cloreto de vinila) com poli (vinil butiral) / Study of the influence of gamma radiation on the mechanical and thermal properties of \"thermoplastic elastomers\" poly (vinyl chloride) blends with poly (vinyl butyral)

Farias, Italo Fernando 31 July 2018 (has links)
A vasta gama de sistemas poliméricos classificados como blendas tem sido alvo crescente no meio acadêmico e científico. A possibilidade de obtenção de propriedades combinadas e múltiplas, associada a incorporações de blendas poliméricas, enriquece a condição de pesquisa abrindo assim uma extensa área de atuação. Neste trabalho foi proposto o estudo de mistura de composto de poli (cloreto de vinila) plastificado com resíduo de poli (vinil butiral), proveniente de laminados para produção de para-brisas da indústria automotiva, bem como a investigação do efeito da irradiação gama com dose absorvida de 25 kGy, 30 kGy e 40 kGy, controlado com uso de dosímetro de PMMA e taxa de dose equivalente de 0-10 kGy.h-1. Foram analisadas variações das propriedades mecânicas e térmicas das amostras antes e após exposição à radiação gama. As formulações foram constituídas em diferentes concentrações: composto de PVC-C, resíduo de PVB-R, PVC-C/PVB-R 90/10, PVC-C/PVB-R 50/50 e PVC-R/PVB-R 50/50. O composto de poli (cloreto de vinila) foi formulado e aditivado, apresentando comportamento de um elastômero termoplástico, produto flexível. Foram incorporadas aparas moídas de poli (vinil butiral), provenientes de laminados para produção de para-brisas. Ambos os materiais foram incorporados em extrusora granuladora tipo rosca simples e submetidos ao processo de calandragem para efetivação da mistura e formação de mantas plásticas. As mantas foram irradiadas em um reator multipropósito de 60Co e caracterizadas para verificação das propriedades mecânicas e térmicas. Para tanto, as blendas após exposição à radiação gama apresentaram propriedades mecânicas e térmicas intermediarias as propriedades dos seus componentes, mostrando-se um material resistente e de baixo custo. Por meio da microscopia eletrônica de varredura obteve uma redução nos vasos interfaciais mostrando um aumento na capacidade de percolação do PVB na matriz de PVC, favorecendo suas propriedades físicas. / The wide range of polymer systems classified as blends has been increasingly targeted in the academic and scientific milieu. The possibility of obtaining multiple and combined properties, combined with the incorporation of polymer blends, enriches the research condition, thus opening up an extensive area of performance. In this work the study of the poly (vinyl butyral) plasticized polyvinyl chloride mixture from laminates for automotive windshield production was investigated, as well as the investigation of the effect of gamma irradiation with absorbed dose of 25 kGy, 30 kGy and 40 kGy, controlled with use of PMMA dosimeter and equivalent dose rate of 0-10 kGy.h-1. Variations of the mechanical and thermal properties of the samples were analyzed before and after exposure to gamma radiation. The formulations were constituted in different concentrations: PVC-C compound, PVB-R residue, PVC-C/PVB-R 90/10, PVC-C/PVB-R 50/50 and PVC-R/PVB-R 50/50. The polyvinyl chloride compound was formulated and added, exhibiting the behavior of a thermoplastic elastomer, a flexible product. Poly (vinyl butyral) ground chips were produced from laminates for the production of windshields. Both materials were incorporated in a single-thread granulator extruder and submitted to the calendering process to effect the mixing and formation of plastic blankets. The blankets were irradiated in a 60Co multipurpose reactor and characterized for verification of mechanical and thermal properties. In order to do so, the blends after exposure to gamma radiation presented mechanical properties and intermediate thermal properties of their components, showing a resistant material and low cost. By means of the scanning electron microscopy it obtained a reduction in the interfacial vessels showing an increase in the percolation capacity of the PVB in the PVC matrix, favoring its physical properties.

Page generated in 0.0376 seconds