Spelling suggestions: "subject:"[een] PRESSURE VESSEL"" "subject:"[enn] PRESSURE VESSEL""
71 |
Analysis Of Fiber Reinforced Composite Vessel Under Hygrothermal LoadingSayman, Sumeyra 01 January 2004 (has links) (PDF)
The aim of this study is to develop an explicit analytical formulation based on the anisotropic elasticity theory that determines the behavior of fiber reinforced composite vessel under hygrothermal loading. The loading is studied for three cases separately, which are plane strain case, free ends and pressure vessel cases. For free-end and pressure vessel cases, the vessel is free to expand, on the other hand for plane strain case, the vessel is prevented to expand. Throughout the study, constant, linear and parabolic temperature distributions are investigated and for each distribution, separate equations are developed. Then, a suitable failure theory is applied to investigate the behavior of fiber reinforced composite vessels under the thermal and moisture effects. Throughout the study, two computer programs are developed which makes possible to investigate the behavior of both symmetrically and antisymmetrically oriented layers. The first program is developed for plane strain case, where the second one is for pressure vessel and free-end cases. Finally, several thermal loading conditions have been carried out by changing the moisture concentration and temperature distributions and the results are tabulated for comparison purposes.
|
72 |
Computer Aided Design And Structural Analysis Of Pressure VesselsKandaz, Murat 01 June 2006 (has links) (PDF)
This study is conducted for the design and analysis of pressure vessels and associated pressurized equipment using various codes and methods. A computer software is developed as the main outcome of this study, which provides a quick and comprehensive analysis by using various methods utilized in codes and standards together with theoretical and empirical methods which are widely accepted throughout the world.
Pressure vessels are analyzed using ASME Boiler and Pressure Vessel Code, whereas auxiliary codes, especially ASCE and AISC codes are utilized for structural analyses of these equipment. Effect of wind, seismic, and other types of loadings are also taken into consideration in detail, with dynamic analyses. Support structures and their auxiliary components are also items of analysis.
Apart from pressure vessels, many pressurized process equipments that are commonly used in the industy are also included in the scope of the study. They include safety valves which are an integral part of those kinds of pressurized or enclosed systems, two of the heat exchanger components with great importance -tubesheets and expansion joints-, and API 650 tanks for oil or water storage.
The computer software called as VESSELAID is written in Microsoft Visual Basic 6.0 using SI units. Design and analysis methods of VESSELAID are based on various code rules, recommended design practices and alternative approaches.
|
73 |
Optimisation du dimensionnement d'un réservoir composite type IV pour stockage très haute pression d'hydrogène / Design optimisation of a type IV high pressure hydrogen composite vesselLeh, David 24 October 2013 (has links)
Ce travail a pour but de proposer une nouvelle approche du dimensionnement optimisé des réservoirs de stockage d’hydrogène de type IV visant à mieux répondre aux enjeux industriels. Les objectifs scientifiques et techniques consistent à disposer de modèles qualifiés pour la simulation du comportement de ces réservoirs, associés à des méthodologies de dimensionnement et d’optimisation fiables. La démarche s’appuie sur trois axes principaux :– proposer une démarche de conception prédictive en intégrant (i) un premier aspect lié à la ruine de la structure qui est la conséquence de mécanismes complexes et multiples d’endommagement s’initiant, s’accumulant et se développant dans un milieu anisotrope et (ii) des modèles de simulation de la structuration composite spécifique au procédé d’enroulement filamentaire, technologie employée largement dans la fabrication des réservoirs de stockage à haute pression. Leurs implémentations constituent une première avancée face à l’existant ;– choisir et évaluer les paramètres structuraux par une démarche d’optimisation où nous sommes amenés à utiliser (i) des méthodes de métamodélisation permettant de répondre aux contraintes de coûts, (ii) des méthodes spécifiques de tri et (iii) des méthodes à spectres larges qui recherchent des solutions sur une large population telles que des méthodes génétiques ;– qualifier la démarche dans sa globalité par une comparaison entre calculs et essais. Ainsi, la finalité de ce travail est de développer et valider des modèles et méthodes pour permettre de mieux concevoir, tester et fabriquer à moindre coût un réservoir avec une structure calculée optimisée. / The purpose of this study is to suggest a new way to design type IV high pressure hydrogen composite vessels to better fulfil industrial requirements. Developing suitable models for the comportment’s simulation of these vessels in relation with a reliable design method is the main scientific and technical aim. This approach relies on the three following lines :– perform a predictive design method using the most recent theoretical and numerical works investigated on composite materials and more specifically in taking into account (i) an essential aspect linked to the structural failure which is the consequence of the initiation, accumulation and propagation of complex damage mechanisms and (ii) the use of specific composite lay-up models related to the filament winding process, used for pressure vessels manufacturing. These approaches are significant breakthroughs compared with previous studies ;– choose and assess structural parameters with an optimisation approach where we use (i) surrogate methods to meet economic requirements, (ii) specific sorting methods and (iii) broad-spectrum methods such as genetic algorithm methods ;– approve of the whole approach by theoretical and experimental comparisons.The goal of the project will be to develop, provide and approve models to enable a better conception and industrialisation of an optimal high pressure vessel in relations with costs.
|
74 |
A critical evaluation of the design of removable cover-plate header boxes for air-cooled heat exchangersPrinsloo, Lionel 22 September 2011 (has links)
Large air-cooled heat exchangers (ACHEs) are most popularly implemented in the petrochemical and power industries at arid locations. They operate on a simple concept of convective heat transfer, whereby air in the surrounding atmosphere is caused to flow across a tube bundle, which in turn transports a process fluid. The distribution and direction of the process fluid flow may furthermore be guided via a set of appropriately located header boxes, which essentially consist of a collection of welded flat plates and nozzle attachments. Perforations on one of the faces of these boxes serve as an interface to the tube bundle. The overall design and construction of an ACHE is commonly regulated by an American Petroleum Institute (API) standard, which is required to be used in conjunction with acceptable design codes. In spite of this, the design of certain header box configurations remains of prominent concern. It is the focus of the present study to investigate the approach adopted for a header box variant labelled as the removable cover type. In this configuration, one of the plates used to construct the header box is fastened and sealed by a collection of bolted joints and a gasket, allowing it to be removed. One appropriate design code for the header box equipment is the ASME (American Society of Mechanical Engineers) boiler and pressure vessel code. However, it provides no specific approach pertaining to the removable cover design. Instead it has been commonplace in industry for a number of aspects from this code to be synthesized, together with a collection of assumptions surrounding the header box behaviour, into an all encompassing design by rule approach. In this approach, the header box behaviour is accepted as being planar, whilst circumstances such as nozzle attachments and associated loading would suggest that a more comprehensive approach should be undertaken. The aim of the present study is therefore to critically evaluate the current practice, and establish its adequacy. To do so, a detailed three-dimensional finite element model (FEM) of an example header box design is developed. Subsequent comparisons with the stress distribution predicted via current practice show that the existing analytical model gives inaccurate and, in cases, overly conservative results. A new analytical approach developed from rigid frame theory is demonstrated to provide improved correlation with FEM. The linear elastic design by analysis approach, presented in the ASME code, is also utilised as a method for establishing design adequacy. Results obtained via design by analysis incorporating the finite element method are shown to be less conservative than those arising from design by rule methods. The design by analysis approach is also used to conduct a more detailed investigation of nozzle placement and external loading. In general, the effect of including a nozzle did not result in a significant increase in side plate stress, with failure more likely to occur within the nozzle wall. / Dissertation (MEng)--University of Pretoria, 2011. / Mechanical and Aeronautical Engineering / unrestricted
|
75 |
Praktické porovnání přístupů návrhů tlakových nádob v rámci ČSN EN 13445 / Practical comparison of pressure vessels design approaches within ČSN EN 13445Procházka, Tomáš January 2020 (has links)
This diploma thesis deals with a practical comparison of pressure vessels design approaches within ČSN EN 13445. The thesis aimed to design the device using various approaches described in the European Standard and compare them. For the design was chosen a liquid filter, which works as the first stage of the filtration system in a waste-to-energy plant. In the first part of the thesis is introduced to different routes of design by analysis (DBA), including a description of plasticity conditions and finite element types. These theoretical knowledge are applied in the practical part. The practical part consists of designs of the pressure vessel according to different approaches and methods. The first approach is a design by formulae (DBF), which was done in software Visual Vessel Design. The second approach is DBA. This method of design can be realized according to the European Standard by two routes, either by Method base on the stress categories or so-called Direct Route. Both routes were performed in this work. Stress analyzes were made in programs ANSYS Workbench and NozzlePRO. At the end of the thesis, there is a comparison of used approaches and the resulting values of the design.
|
76 |
Versuchsanlage ROCOM zur Untersuchung der Kühlmittelvermischung in Druckwasserreaktoren - Ergebnisse quasistationärer VermischungsexperimenteGrunwald, G., Kliem, S., Höhne, T., Rohde, U., Prasser, H.-M., Richter, K.-H., Weiß, F.-P. January 2002 (has links)
The test facility ROCOM (Rossendorf Coolant Mixing Model) has been built for the investigation of coolant mixing processes in the reactor pressure vessel of pressurised water reactors (PWR). ROCOM is a 1:5 model of the German PWR KONVOI and has been designed for a wide range of different mixing scenarios. ROCOM disposes of four loops with fully controllable coolant pumps. The test facility is operated with demineralised water. For the investigation of mixing, tracer solution (water labelled with salt) is injected into the facility. The transient distribution of the electrical conductivity is is measured at different positions of the flow path by means of wire-mesh sensor technique with high resolution in space and time. The measured conductivity is transformed into a dimensionless mixing scalar. The mixing at quasi-stationary conditions (constant loop mass flow rates) has been investigated in the presented experiments. That concerned nominal operation conditions, the operation with a reduced number of loops and the investigation of cold-water transients with running pumps and conditions of developed natural circulation. In special experimental series, the reproducibility of the results at identicla boundary conditions within the confidence intervalls has been shown. Further, the influence of various factors on the mixing has been investigated. This included the pressure losses at the core bottom plate, the global coolant flow level and the influence of the loop flow rate on the perturbed sector at the core inlet. An analysis of the measurement error of the used measurement technique completes the report.
|
77 |
Langzeitspezifische Alterungseffekte in RDB-StahlBergner, Frank, Ulbricht, Andreas, Wagner, Arne January 2014 (has links)
Ziel des BMWi-Fördervorhabens 1501393 ist es, durch den Einsatz von Untersuchungsmethoden auf der nm-Skala einen Beitrag zur Aufklärung von Flusseffekten und von Late-Blooming-Effekten in bestrahlten RDB-Stählen zu leisten. Zur Untersuchung dieser Effekte wurde auf RDB-Stähle deutscher Reaktoren aus zwei bei der AREVA GmbH abgeschlossenen Vorhaben zurückgegriffen. Die Auswahl der Grundwerkstoffe und Schweißgüter erfolgte so, dass sich optimale Voraussetzungen für das Erreichen des Gesamtziels des Vorhabens ergeben. Die ausgewählten Untersuchungsmethoden umfassen mit der Neutronenkleinwinkelstreuung, der Atomsondentomographie und der Positronen-annihilationsspektroskopie solche Techniken, die die nm-skaligen bestrahlungsinduzierten Defekt-Fremdatom-Cluster bestmöglich und in komplementärer Weise zu detektieren und zu charakterisieren gestatten. Es wurde ein Flusseffekt auf die Größe der bestrahlungsinduzierten Fremdatomcluster, jedoch nicht auf den Volumenanteil und die mechanischen Eigenschaften gefunden. In einem Cu-armen RDB-Schweißgut wurde ein Late-Blooming-Effekt nachgewiesen, der sich in einem steilen Anstieg des Clustervolumenanteils und der Übergangstemperaturverschiebung nach einer Phase schwacher oder fehlender Zunahme niederschlägt.
The BMWi project 1501393 aimed at contributing to the clarification of flux effects and late blooming effects in irradiated RPV steels by means of experimental techniques of sensitivity at the nm scale. The investigation of these effects was focussed on RPV steels, both base metal and weld of German reactors selected according to the objectives of the present project from two previous projects performed at AREVA GmbH. The complementary techniques of small-angle neutron scattering, atom probe tomography and positron annihilation spectroscopy were applied to detect and characterize the irradiation-induced nm-scale defect-solute clusters. A flux effect on the size of the irradiation-induced clusters but no flux effect on both cluster volume fraction and mechanical properties was found. For a low-Cu RPV weld, a late blooming effect was observed, which results in a steep slope of both cluster volume fraction and transition temperature shift after an initial stage of small or no change.
|
78 |
Nanoclusters in Diluted Fe-Based Alloys Containing Vacancies, Copper and Nickel: Structure, Energetics and ThermodynamicsAl-Motasem Al-Asqalani, Ahmed Tamer 15 June 2012 (has links)
The formation of nano–sized precipitates is considered to be the origin of hardening and embrittlement of ferritic steel used as structural material for pressure vessels of nuclear reactors, since these nanoclusters hinder the motion of dislocations within the grains
of the polycrystalline bcc–Fe matrix. Previous investigations showed that these small precipitates are coherent and may consist of Cu, Ni, other foreign atoms, and vacancies. In this work a combination of on–lattice simulated annealing based on Metropolis Monte Carlo simulations and off–lattice relaxation by Molecular Dynamics is applied in
order to determine the structure, energetics and thermodynamics of coherent clusters in bcc–Fe. The most recent interatomic potentials for Fe–Cu–Ni alloys are used. The atomic structure and the formation energy of the most stable configurations as well as their total and monomer binding energy are calculated.
Atomistic simulation results show that pure (vacancy and copper) as well as mixed (vacancy-copper, copper-nickel and vacancy-copper-nickel) clusters show facets which correspond to the main crystallographic planes. Besides facets, mixed clusters exhibit a core-shell structure. In the case of v_lCu_m, a core of vacancy cluster coated with copper atoms is found. In binary Cum_Ni_n, Ni atoms cover the outer surface of copper cluster.
Ternary v_lCu_mNi_n clusters show a core–shell structure with vacancies in the core coated by a shell of Cu atoms, followed by a shell of Ni atoms. It has been shown qualitatively that these core–shell structures are formed in order to minimize the interface energy
between the cluster and the bcc-Fe matrix. Pure nickel consist of an agglomeration of Ni atoms at second nearest neighbor distance, whereas vacancy-nickel are formed by a vacancy cluster surrounded by a nickel agglomeration. Both types of clusters are called quasi-cluster because of their non-compact structure. The atomic configurations of quasiclusters can be understood by the peculiarities of the binding between Ni atoms and vacancies. In all clusters investigated Ni atoms may be nearest neighbors of Cu atoms but never nearest neighbors of vacancies or other Ni atoms. The structure of the clusters found in the present work is consistent with experimental observations and with results of pairwise calculations. In agreement with experimental observations and with recent results of atomic kinetic Monte Carlo simulation it is shown that the presence of Ni atoms promotes the nucleation of clusters containing vacancies and Cu.
For pure vacancy and pure copper clusters an atomistic nucleation model is established, and for typical irradiation conditions the nucleation free energy and the critical size for cluster formation have been estimated. For further application in rate theory and object kinetic Monte Carlo simulations compact and physically–based fit formulae are
derived from the atomistic data for the total and the monomer binding energy. The fit is based on the structure of the clusters (core-shell and quasi-cluster) and on the classical capillary model.
|
79 |
The Correlation of Hardness to Toughness and the Superior Impact Properties of Martensite in Pressure Vessel Steels applied to Temper Bead QualificationSmith, Mackenzie Boeing J. 04 October 2021 (has links)
No description available.
|
80 |
Development of a Novel Detector Response Formulation and Algorithm in RAPID and its BenchmarkingWang, Meng Jen 24 October 2019 (has links)
Solving radiation shielding problems, i.e. deep penetration problems, is a challenging task from both computation time and resource aspects in field of nuclear engineering. This is mainly because of the complexity of the governing equation for neutral particle transport - Linear Boltzmann Equation (LBE). The LBE includes seven independent variables with presence of integral and differential operators. Moreover, the low successive rate of radiation shielding problem is also challenging for solving such problems.
In this dissertation, the Detector Response Function (DRF) methodology is proposed and developed for real-time and accurate radiation shielding calculation. The real-time capability of solving radiation shielding problem is very important for: (1) Safety and monitoring of nuclear systems; (2) Nuclear non-proliferation; and (3) Sensitivity study and Uncertainty quantification. Traditionally, the difficulties of solving radiation problem are: (1) Very long computation time using Monte Carlo method; (2) Extremely large memory requirement for deterministic method; and (3) Re-calculations using hybrid method. Among all of them, the hybrid method, typically Monte Carlo + deterministic, is capable of solving radiation shielding problem more efficiently than either Monte Carlo or deterministic methods. However, none of the aforementioned methods are capable of performing "real-time" radiation shielding calculation.
Literature survey reveals a number of investigation on improving or developing efficient methods for radiation shielding calculation. These methods can be categorized by: (1) Using variance reduction techniques to improve successive rate of Monte Carlo method; and (2) Developing numerical techniques to improve convergence rate and avoid unphysical behavior for deterministic method. These methods are considered clever and useful for the radiation transport community. However, real-time radiation shielding calculation capability is still missing although the aforementioned advanced methods are able to accelerate the calculation efficiency significantly. In addition, very few methods are "Physics-based"
For example, the mean free path of neutrons are typically orders of magnitude smaller than a nuclear system, i.e. nuclear reactor. Each individual neutron will not travel too far before its history is terminated. This is called the "loosely coupled" nature of nuclear systems. In principle, a radiation shielding problem can be potentially decomposed into pieces and solved more efficient. In the DRF methodology, the DRF coefficients are pre-calculated with dependency of several parameters. These coefficients can be directly coupled with radiation source calculated from other code system, i.e. RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system. With this arrangement, detector/dosimeter response can be calculated on the fly.
Thus far, the DRF methodology has been incorporated into the RAPID code system, and applied on four different benchmark problems: (1) The GBC-32 Spent Nuclear Fuel (SNF) cask flooded with water with a $^3$He detector placed on the cask surface; (2) The VENUS-3 experimental Reactor Pressure Vessel (RPV) neutron fluence calculation benchmark problem; (3) RPV dosimetry using the Three-Mile Island Unit-1 (TMI-1) commercial reactor; and (4) A Dry storage SNF cask external dosimetry problem.
The results show that dosimeter/detector response or dose value calculations using the DRF methodology are all within $2sigma$ relative statistical uncertainties of MCNP5 + CADIS (Consistent Adjoint Driven Importance Sampling) standard fixed-source calculation. The DRF methodology only requires order of seconds for the dosimeter/detector response or dose value calculations using 1 processor if the DRF coefficients are appropriately prepared. The DRF coefficients can be reused without re-calculations when a model configuration is changed. In contrast, the standard MCNP5 calculations typically require more than an hour using 8 processors, even using the CADIS methodology. The DRF methodology has enabled the capability of real-time radiation shielding calculation.
The radiation transport community can be greatly benefited by the development of DRF methodology. Users can easily utilize the DRF methodology to perform parametric studies, sensitivity studies, and uncertainty quantifications. The DRF methodology can be applied on various radiation shielding problems, such as nuclear system monitoring and medical radiation facilities. The appropriate procedure of DRF methodology and necessary parameters on DRF coefficient dependency will be discussed in detail in this dissertation. / Doctor of Philosophy / Since the beginning of nuclear era, enormous amount of radiation applications have been proposed, developed, and applied in our daily life. The radiation is useful and beneficial when they are under control. However, there will be some "unwanted radiation" from these applications, which have to be shielded. For this, radiation shielding has become a very important task. To effectively shield the unwanted radiations, studying the thickness and design of the shields is important. Instead of directly performing experiments, computation is a more affordable and safer approach. The radiation shielding computation is typically an extremely difffficult task due to very limited "communication" between the radiation within the shield and detector outside the shield. In general, it is impractical to simulate the radiation shielding problems directly because the extremely expensive computation resources. Most of interactions of radiation are within the shield while we are only interested in how many of them penetrate through the shield. This is typically called "deep penetration" problems in the radiation transport community.
|
Page generated in 0.0463 seconds