• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 343
  • 234
  • 52
  • 31
  • 15
  • 9
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 877
  • 877
  • 231
  • 231
  • 170
  • 143
  • 140
  • 114
  • 111
  • 110
  • 92
  • 64
  • 62
  • 59
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Design and analysis of multivariable predictive control applied to an oil-water-gas separator a polynomial approach /

Nunes, Giovani Cavalcanti, January 2001 (has links) (PDF)
Thesis (Ph. D.)--University of Florida, 2001. / Title from first page of PDF file. Document formatted into pages; contains viii, 118 p.; also contains graphics. Vita. Includes bibliographical references (p. 115-117).
112

Multivariate statistical monitoring and fault diagnosis of dynamic batch processes with two-time-dimensional strategy /

Yao, Yuan. January 2009 (has links)
Includes bibliographical references (p. 193-208).
113

Monitoring and interpreting multistage and multicategory processes

Duran Lopez, Rodrigo Ignacio, January 2009 (has links)
Thesis (Ph. D.)--Rutgers University, 2009. / "Graduate Program in Industrial and Systems Engineering." Includes bibliographical references (p. 114-120).
114

Analysis and design of heterogeneous control laws for nonlinear chemical processes /

Pfeiffer Celaya, Carlos Fernando, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 102-106). Available also in a digital version from Dissertation Abstracts.
115

Development of a free-ranging material handling system for manufacturing and warehouse application /

Dai, Bin. January 2009 (has links)
Includes bibliographical references (p. 64-71).
116

A probabilistic approach for sensor fault detection and identification /

Mehranbod, Nasir. Soroush, Masoud. January 2002 (has links)
Thesis (Ph. D.)--Drexel University, 2002. / Includes abstract and vita. Includes bibliographical references (leaves 104-109).
117

Transition control techniques in nonlinear process control /

Özkan, Leyla, January 2002 (has links)
Thesis (Ph. D.)--Lehigh University, 2003. / Includes vita. Includes bibliographical references (leaves 133-143).
118

Statistical selection and wavelet-based profile monitoring

Wang, Huizhu 08 June 2015 (has links)
This thesis consists of two topics: statistical selection and profile monitoring. Statistical selection is related to ranking and selection in simulation and profile monitoring is related to statistical process control. Ranking and selection (R&S) is to select a system with the largest or smallest performance measure among a finite number of simulated alternatives with some guarantee about correctness. Fully sequential procedures have been shown to be efficient, but their actual probabilities of correct selection tend to be higher than the nominal level, implying that they consume unnecessary observations. In the first part, we study three conservativeness sources in fully sequential indifference-zone (IZ) procedures and use experiments to quantify the impact of each source in terms of the number of observations, followed by an asymptotic analysis on the impact of the critical one. Then we propose new asymptotically valid procedures that lessen the critical conservativeness source, by mean update with or without variance update. Experimental results showed that new procedures achieved meaningful improvement on the efficiency. The second part is developing a wavelet-based distribution-free tabular CUSUM chart based on adaptive thresholding. WDFTCa is designed for rapidly detecting shifts in the mean of a high-dimensional profile whose noise components have a continuous nonsingular multivariate distribution. First computing a discrete wavelet transform of the noise vectors for randomly sampled Phase I (in-control) profiles, WDFTCa uses a matrix-regularization method to estimate the covariance matrix of the wavelet-transformed noise vectors; then those vectors are aggregated (batched) so that the nonoverlapping batch means of the wavelet-transformed noise vectors have manageable covariances. Lower and upper in-control thresholds are computed for the resulting batch means of the wavelet-transformed noise vectors using the associated marginal Cornish-Fisher expansions that have been suitably adjusted for between-component correlations. From the thresholded batch means of the wavelet-transformed noise vectors, Hotelling’s T^2-type statistics are computed to set the parameters of a CUSUM procedure. To monitor shifts in the mean profile during Phase II (regular) operation, WDFTCa computes a similar Hotelling’s T^2-type statistic from successive thresholded batch means of the wavelet-transformed noise vectors using the in-control thresholds; then WDFTCa applies the CUSUM procedure to the resulting T^2-type statistics. Experimentation with several normal and nonnormal test processes revealed that WDFTCa outperformed existing nonadaptive profile-monitoring schemes.
119

Performance monitoring of run-to-run control systems used in semiconductor manufacturing

Prabhu, Amogh V., 1983- 31 August 2012 (has links)
Monitoring and diagnosis of the control system, though widely used in the chemical processing industry, is currently lacking in the semiconductor manufacturing industry. This work provides methods for performance assessment of the most commonly used control system in this industry, namely, run-to-run process control. First, an iterative solution method for the calculation of best achievable performance of the widely used run-to-run Exponentially Weighted Moving Average (EWMA) controller is derived. A normalized performance index is then defined based on the best achievable performance. The effect of model mismatch in the process gain and disturbance model parameter, delays, bias changes and nonlinearity in the process is then studied. The utility of the method under manufacturing conditions is tested by analyzing three processes from the semiconductor industry. Missing measurements due to delay are estimated using the disturbance model for the process. A minimum norm estimation method coupled with Tikhonov regularization is developed. Simulations are then carried out to investigate disturbance model mismatch, gain mismatch and different sampling rates. Next, the forward and backward Kalman filter are applied to obtain the missing values and compared with previous examples. Manufacturing data from three processes is then analyzed for different sampling rates. Existing methods are compared with a new method for state estimation in high-mix manufacturing. The new method is based on a random walk model for the context states. This approach is also combined with the recursive equations of the Kalman filter. The method is applied to an industrial exposure process by extending the random walk model into an integrated moving average model and weights used to give preference to the context that is more frequent. Finally, a performance metric is derived for PID controllers, when they are used to control nonlinear processes. Techniques to identify nonlinearity in a process are introduced and polynomial NARX models are proposed to represent a nonlinear process. A performance monitoring technique used for MIMO processes is then applied. Finally, the method is applied to an EWMA control case used before, a P/PI control case from literature and two cases from the semiconductor industry. / text
120

Dynamic modeling, optimization, and control of monoethanolamine scrubbing for CO2 capture

Ziaii Fashami, Sepideh 13 November 2012 (has links)
This work seeks to develop optimal dynamic and control strategies to operate post combustion CO2 capture in response to various dynamic operational scenarios. For this purpose, a rigorous dynamic model of absorption/stripping process using monothanolamine was created and then combined with a simplified steady state model of power cycle steam turbines and a multi-stage variable speed compressor in Aspen Custom Modeler. The dynamic characteristics and interactions were investigated for the plant using 30% wt monoethanolamine (MEA) to remove 90% of CO2 in the flue gas coming from a 100 MW coal-fired power plant. Two load reduction scenarios were simulated: power plant load reduction and reboiler load reduction. An ACM® optimization tool was implemented to minimize total lost work at the final steady state condition by adjusting compressor speed and solvent circulation rate. Stripper pressure was allowed to vary. Compressor surge limit, run off condition in rich and lean pumps, and maximum allowable compressor speed were found as constraints influencing the operation at reduced loads. A variable speed compressor is advantageous during partial load operations because of its flexibility for handling compressor surge and allowing the stripper and reboiler to run at optimal conditions. Optimization at low load levels demonstrated that the most energy efficient strategy to control compressor surge is gas recycling which is commonly applied by an anti-surge control system installed on compressors. Trade offs were found between initial capital cost and optimal operation with minimal energy use for large load reduction. The examples are, designing the stripper in a way that can tolerate the pressure two times larger than normal operating pressure, over sizing the pumps and over designing the compressor speed. A plant-wide control procedure was used to design an effective multi-loop control system. Five control configurations were simulated and compared in response to large load variations and foaming in the stripper and the absorber. The most successful control structure was controlling solvent rate, reboiler temperature, and stripper pressure by liquid valve, steam valve, and compressor speed respectively. With the investigated disturbances and employing this control scheme, development of an advanced multivariable control system is not required. This scheme is able to bring the plant to the targeted set points in about 6 minutes for such a system designed initially with 11 min total liquid holdup time.Frequency analysis used for evaluation of lean and rich tanks on the dynamic performances has shown that increasing the holdup time is not always helpful to damp the oscillations and rejecting the disturbances. It means there exists an optimum initial residence time in the tanks. Based on the results, a 5-minute holdup can be a reasonable number to fulfill the targets. / text

Page generated in 0.0299 seconds