• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] A NOVEL SOLUTION TO EMPOWER NATURAL LANGUAGE INTERFACES TO DATABASES (NLIDB) TO HANDLE AGGREGATIONS / [pt] UMA NOVA SOLUÇÃO PARA CAPACITAR INTERFACES DE LINGUAGEM NATURAL PARA BANCOS DE DADOS (NLIDB) PARA LIDAR COM AGREGAÇÕES

ALEXANDRE FERREIRA NOVELLO 19 July 2021 (has links)
[pt] Perguntas e Respostas (Question Answering - QA) é um campo de estudo dedicado à construção de sistemas que respondem automaticamente a perguntas feitas em linguagem natural. A tradução de uma pergunta feita em linguagem natural em uma consulta estruturada (SQL ou SPARQL) em um banco de dados também é conhecida como Interface de Linguagem Natural para Bancos de Dados (Natural Language Interface to Database - NLIDB). Os sistemas NLIDB geralmente não lidam com agregações, que podem ter os seguintes elementos: funções de agregação (como contagem, soma, média, mínimo e máximo), uma cláusula de agrupamento (GROUP BY) e uma cláusula HAVING. No entanto, eles fornecem bons resultados para consultas normais. Esta dissertação aborda a criação de um módulo genérico, para ser utilizado em sistemas NLIDB, que permite a tais sistemas realizar consultas com agregações, desde que os resultados da consulta que o NLIDB retorna sejam, ou possam ser transformados, em um resultado no formato tabular. O trabalho cobre agregações com especificidades como ambiguidades, diferenças de escala de tempo, agregações em atributos múltiplos, o uso de adjetivos superlativos, reconhecimento básico de unidade de medida, agregações em atributos com nomes compostos e subconsultas com funções de agregação aninhadas em até dois níveis. / [en] Question Answering (QA) is a field of study dedicated to building systems that automatically answer questions asked in natural language. The translation of a question asked in natural language into a structured query (SQL or SPARQL) in a database is also known as Natural Language Interface to Database (NLIDB). NLIDB systems usually do not deal with aggregations, which can have the following elements: aggregation functions (as count, sum, average, minimum and maximum), a grouping clause (GROUP BY) and a having clause (HAVING). However, they deliver good results for normal queries. This dissertation addresses the creation of a generic module, to be used in NLIDB systems, that allows such systems to perform queries with aggregations, on the condition that the query results the NLIDB return are, or can be transformed into, a result set in the form of a table. The work covers aggregations with specificities such as ambiguities, timescale differences, aggregations in multiple attributes, the use of superlative adjectives, basic unit measure recognition, aggregations in attributes with compound names and subqueries with aggregation functions nested up to two levels.

Page generated in 0.0489 seconds