• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A multi-configuration approach to reliability based structural integrity assessment for ultimate strength

Kolios, Athanasios 11 1900 (has links)
Structural Reliability treats uncertainties in structural design systematically, evaluating the levels of safety and serviceability of structures. During the past decades, it has been established as a valuable design tool for the description of the performance of structures, and lately stands as a basis in the background of the most of the modern design standards, aiming to achieve a uniform behaviour within a class of structures. Several methods have been proposed for the estimation of structural reliability, both deterministic (FORM and SORM) and stochastic (Monte Carlo Simulation etc) in nature. Offshore structures should resist complicated and, in most cases, combined environmental phenomena of greatly uncertain magnitude (eg. wind, wave, current, operational loads etc). Failure mechanisms of structural systems and components are expressed through limit state functions, which distinguish a failure and a safe region of operation. For a jacket offshore structure, which comprises of multiple tubular members interconnected in a three dimensional truss configuration, the limit state function should link the actual load or load combination acting on it locally, to the response of each structural member. Cont/d.
12

Vliv lidského činitele na bezpečnost průmyslových pecí / Impact of Human Factor on Industrial Furnace Safety

Mukhametzianova, Leisan January 2019 (has links)
The presented doctoral thesis is focused on assessment of human factor impact on safety of industrial furnaces. Industrial furnaces are classified as machinery and belong to a group of industrial thermal equipment. The operation of industrial furnaces is burdened with the risks which the manufacturers and the furnace operators realize. The first part of the thesis presents an analysis of the current situation of legislation and scientific knowledges in the field of assessment of human factor impact on safety of industrial furnaces. In this part of the thesis the issue of human factor in other industrial branches: chemical industry, aviation and nuclear industry is also described. On the basis of conducted research the main aim of the thesis was established: preparation of a methodology for assessment of human factor impact on safety of industrial furnaces. Secondary targets were also listed. The second part deals with the assessment of risks connected with the operation of industrial furnaces and the assessment of human factor impact on safety of industrial furnaces. The furnace safety requirements, the process of furnaces risk assessment, the methods used for risk assessment and problems connected with the risk assessment are described. This part of the thesis explains the concept of human factor, presents a classification and description of the methods used for human reliability assessment, as well as the factors influencing the reliability of the operator. The third part of the thesis contains a proposed methodology for assessment of human factor impact on safety of industrial furnaces. Within the methodology performance shaping factors are stated, qualitative and quantitative assessment of human factor impact on safety of industrial furnaces is made and the system integration of the knowledges into the developed methodology is proposed – qualitative model for improvement of system state. The methodology is further verified on a real equipment – a hardening furnace.
13

Funkční analýza rizik (FHA) malého letounu / Functional Hazard Assessment of Small Aircraft

Hartman, Matěj January 2013 (has links)
The object of this diploma thesis is to perform Functional Hazard Assessment of small four-seat aircraft according to Federal Aviation Regulations Part 23, which would be similar to present aircrafts on market. Input data were acquired by research of systems aircrafts use on current market. On this basis the Functional Hazard Assessment was performed ad aircraft level. Total loss of power supply was qualified as Catastrophic therefore is used in following assessment. A preliminary failure rate assessment of typical parts used in electrical system was performed at the end of diploma thesis. For the most crucial parts a simple model was created and failure rate computed.
14

Reliability Assessment of a Power Grid with Customer Operated Chp Systems Using Monte Carlo Simulation

Manohar, Lokesh Prakash 01 January 2009 (has links) (PDF)
This thesis presents a method for reliability assessment of a power grid with distributed generation providing support to the system. The distributed generation units considered for this assessment are Combined Heat and Power (CHP) units operated by individual customers at their site. CHP refers to the simultaneous generation of useful electric and thermal energy. CHP systems have received more attention recently due to their high overall efficiency combined with decrease in costs and increase in reliability. A composite system adequacy assessment, which includes the two main components of the power grid viz., Generation and Distribution, is done using Monte Carlo simulation. The State Duration Sampling approach is used to obtain the operating history of the generation and the distribution system components from which the reliability indices are calculated. The basic data and the topology used in the analysis are based on the Institution of Electrical and Electronics Engineers - Reliability Test System (IEEE-RTS) and distribution system for bus 2 of the IEEE-Reliability Busbar Test System (IEEE-RBTS). The reliability index Loss of Energy Expectation (LOEE) is used to assess the overall system reliability and the index Average Energy Not Supplied (AENS) is used to assess the individual customer reliability. CHP reliability information was obtained from actual data for systems operating in New England and New York. The significance of the results obtained is discussed.
15

Developing A Group Decision Support System (gdss) For Decision Making Under Uncertainty

Mokhtari, Soroush 01 January 2013 (has links)
Multi-Criteria Decision Making (MCDM) problems are often associated with tradeoffs between performances of the available alternative solutions under decision making criteria. These problems become more complex when performances are associated with uncertainty. This study proposes a stochastic MCDM procedure that can handle uncertainty in MCDM problems. The proposed method coverts a stochastic MCDM problem into many deterministic ones through a Monte-Carlo (MC) selection. Each deterministic problem is then solved using a range of MCDM methods and the ranking order of the alternatives is established for each deterministic MCDM. The final ranking of the alternatives can be determined based on winning probabilities and ranking distribution of the alternatives. Ranking probability distributions can help the decision-maker understand the risk associated with the overall ranking of the options. Therefore, the final selection of the best alternative can be affected by the risk tolerance of the decisionmakers. A Group Decision Support System (GDSS) is developed here with a user-friendly interface to facilitate the application of the proposed MC-MCDM approach in real-world multiparticipant decision making for an average user. The GDSS uses a range of decision making methods to increase the robustness of the decision analysis outputs and to help understand the sensitivity of the results to level of cooperation among the decision-makers. The decision analysis methods included in the GDSS are: 1) conventional MCDM methods (Maximin, Lexicographic, TOPSIS, SAW and Dominance), appropriate when there is a high cooperation level among the decision-makers; 2) social choice rules or voting methods (Condorcet Choice, Borda scoring, Plurality, Anti-Plurality, Median Voting, Hare System of voting, Majoritarian iii Compromise ,and Condorcet Practical), appropriate for cases with medium cooperation level among the decision-makers; and 3) Fallback Bargaining methods (Unanimity, Q-Approval and Fallback Bargaining with Impasse), appropriate for cases with non-cooperative decision-makers. To underline the utility of the proposed method and the developed GDSS in providing valuable insights into real-world hydro-environmental group decision making, the GDSS is applied to a benchmark example, namely the California‘s Sacramento-San Joaquin Delta decision making problem. The implications of GDSS‘ outputs (winning probabilities and ranking distributions) are discussed. Findings are compared with those of previous studies, which used other methods to solve this problem, to highlight the sensitivity of the results to the choice of decision analysis methods and/or different cooperation levels among the decision-makers
16

A Distributed Surrogate Methodology for Inverse Most Probable Point Searches in Reliability Based Design Optimization

Davidson, James 28 August 2015 (has links)
No description available.
17

Reliability Assessment and Probabilistic Optimization in Structural Design

Mansour, Rami January 2016 (has links)
Research in the field of reliability based design is mainly focused on two sub-areas: The computation of the probability of failure and its integration in the reliability based design optimization (RBDO) loop. Four papers are presented in this work, representing a contribution to both sub-areas. In the first paper, a new Second Order Reliability Method (SORM) is presented. As opposed to the most commonly used SORMs, the presented approach is not limited to hyper-parabolic approximation of the performance function at the Most Probable Point (MPP) of failure. Instead, a full quadratic fit is used leading to a better approximation of the real performance function and therefore more accurate values of the probability of failure. The second paper focuses on the integration of the expression for the probability of failure for general quadratic function, presented in the first paper, in RBDO. One important feature of the proposed approach is that it does not involve locating the MPP. In the third paper, the expressions for the probability of failure based on general quadratic limit-state functions presented in the first paper are applied for the special case of a hyper-parabola. The expression is reformulated and simplified so that the probability of failure is only a function of three statistical measures: the Cornell reliability index, the skewness and the kurtosis of the hyper-parabola. These statistical measures are functions of the First-Order Reliability Index and the curvatures at the MPP. In the last paper, an approximate and efficient reliability method is proposed. Focus is on computational efficiency as well as intuitiveness for practicing engineers, especially regarding probabilistic fatigue problems where volume methods are used. The number of function evaluations to compute the probability of failure of the design under different types of uncertainties is a priori known to be 3n+2 in the proposed method, where n is the number of stochastic design variables. / <p>QC 20160317</p>
18

A multi-configuration approach to reliability based structural integrity assessment for ultimate strength

Kolios, Athanasios Ioannis January 2010 (has links)
Structural Reliability treats uncertainties in structural design systematically, evaluating the levels of safety and serviceability of structures. During the past decades, it has been established as a valuable design tool for the description of the performance of structures, and lately stands as a basis in the background of the most of the modern design standards, aiming to achieve a uniform behaviour within a class of structures. Several methods have been proposed for the estimation of structural reliability, both deterministic (FORM and SORM) and stochastic (Monte Carlo Simulation etc) in nature. Offshore structures should resist complicated and, in most cases, combined environmental phenomena of greatly uncertain magnitude (eg. wind, wave, current, operational loads etc). Failure mechanisms of structural systems and components are expressed through limit state functions, which distinguish a failure and a safe region of operation. For a jacket offshore structure, which comprises of multiple tubular members interconnected in a three dimensional truss configuration, the limit state function should link the actual load or load combination acting on it locally, to the response of each structural member. Cont/d.
19

Confidence-based model validation for reliability assessment and its integration with reliability-based design optimization

Moon, Min-Yeong 01 August 2017 (has links)
Conventional reliability analysis methods assume that a simulation model is able to represent the real physics accurately. However, this assumption may not always hold as the simulation model could be biased due to simplifications and idealizations. Simulation models are approximate mathematical representations of real-world systems and thus cannot exactly imitate the real-world systems. The accuracy of a simulation model is especially critical when it is used for the reliability calculation. Therefore, a simulation model should be validated using prototype testing results for reliability analysis. However, in practical engineering situation, experimental output data for the purpose of model validation is limited due to the significant cost of a large number of physical testing. Thus, the model validation needs to be carried out to account for the uncertainty induced by insufficient experimental output data as well as the inherent variability existing in the physical system and hence in the experimental test results. Therefore, in this study, a confidence-based model validation method that captures the variability and the uncertainty, and that corrects model bias at a user-specified target confidence level, has been developed. Reliability assessment using the confidence-based model validation can provide conservative estimation of the reliability of a system with confidence when only insufficient experimental output data are available. Without confidence-based model validation, the designed product obtained using the conventional reliability-based design optimization (RBDO) optimum could either not satisfy the target reliability or be overly conservative. Therefore, simulation model validation is necessary to obtain a reliable optimum product using the RBDO process. In this study, the developed confidence-based model validation is integrated in the RBDO process to provide truly confident RBDO optimum design. The developed confidence-based model validation will provide a conservative RBDO optimum design at the target confidence level. However, it is challenging to obtain steady convergence in the RBDO process with confidence-based model validation because the feasible domain changes as the design moves (i.e., a moving-target problem). To resolve this issue, a practical optimization procedure, which terminates the RBDO process once the target reliability is satisfied, is proposed. In addition, the efficiency is achieved by carrying out deterministic design optimization (DDO) and RBDO without model validation, followed by RBDO with the confidence-based model validation. Numerical examples are presented to demonstrate that the proposed RBDO approach obtains a conservative and practical optimum design that satisfies the target reliability of designed product given a limited number of experimental output data. Thus far, while the simulation model might be biased, it is assumed that we have correct distribution models for input variables and parameters. However, in real practical applications, only limited numbers of test data are available (parameter uncertainty) for modeling input distributions of material properties, manufacturing tolerances, operational loads, etc. Also, as before, only a limited number of output test data is used. Therefore, a reliability needs to be estimated by considering parameter uncertainty as well as biased simulation model. Computational methods and a process are developed to obtain confidence-based reliability assessment. The insufficient input and output test data induce uncertainties in input distribution models and output distributions, respectively. These uncertainties, which arise from lack of knowledge – the insufficient test data, are different from the inherent input distributions and corresponding output variabilities, which are natural randomness of the physical system.
20

Probabilistic Assessment Of Liquefaction-induced Lateral Ground Deformations

Al Bawwab, Wa&#039, el Mohammad Kh. 01 November 2005 (has links) (PDF)
A new reliability-based probabilistic model is developed for the estimation of liquefaction-induced lateral ground spreading, taking into consideration the uncertainties within the model functional form and the descriptive variables as well. The new model is also introduced as performance-based probabilistic engineering tool.

Page generated in 0.0543 seconds