• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 457
  • 336
  • 88
  • 64
  • 50
  • 20
  • 14
  • 13
  • 10
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 1269
  • 687
  • 250
  • 162
  • 97
  • 91
  • 73
  • 72
  • 67
  • 67
  • 64
  • 63
  • 63
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Supersonic turbulent boundary layers with periodic mechanical non-equilibrium

Ekoto, Isaac Wesley 25 April 2007 (has links)
Previous studies have shown that favorable pressure gradients reduce the turbulence levels and length scales in supersonic flow. Wall roughness has been shown to reduce the large-scales in wall bounded flow. Based on these previous observations new questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface roughness and favorable pressure gradients are combined? To answer these questions and to enhance the current experimental database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties along with surface and flow visualizations of a high-speed ( 2.86 M = ), high Reynolds number (Re 60,000 q » ) supersonic turbulent boundary layer distorted by curvature-induced favorable pressure gradients and large-scale ( 300 s k + » ) uniform surface roughness. Nine models were tested at three separate locations. Three pressure gradient models strengths (a nominally zero, a weak, and a strong favorable pressure gradient) and three roughness topologies (aerodynamically smooth, square, and diamond shaped roughness elements) were used. Highly resolved planar measurements of mean and fluctuating velocity components were accomplished using particle image velocimetry. Stagnation pressure profiles were acquired with a traversing Pitot probe. Surface pressure distributions were characterized using pressure sensitive paint. Finally flow visualization was accomplished using schlieren photographs. Roughness topology had a significant effect on the boundary layer mean and turbulent properties due to shock boundary layer interactions. Favorable pressure gradients had the expected stabilizing effect on turbulent properties, but the improvements were less significant for models with surface roughness near the wall due to increased tendency towards flow separation. It was documented that proper roughness selection coupled with a sufficiently strong favorable pressure gradient produced regions of “negative” production in the transport of turbulent stress. This led to localized areas of significant turbulence stress reduction. With proper roughness selection and sufficient favorable pressure gradient strength, it is believed that localized relaminarization of the boundary layer is possible.
182

Wear of piston rings in hydrostatic transmissions

Skytte af Sätra, Ulf January 2005 (has links)
<p>This study focuses on the wear of piston rings in a hydraulic radial piston motor. The piston ring has to satisfy increasing demands for reliability and longer service life. It has two contacting surfaces, the face and the flank, and operates under a boundary lubrication state.</p><p>This first part of the project aimed to detect and characterise piston ring wear. Measurement by weighing gives an overall value for wear defined as loss of mass. Two-dimensional form and surface roughness measurements show the distribution of wear on the piston ring face in contact with the cylinder bore and the piston ring flank in contact with the piston groove. Three-dimensional analyses, both quantitative and qualitative, allow the wear mechanisms to be identified.</p><p>The wear of piston rings from an actual hydraulic motor was characterised. As well, rig testing was performed in two different test rig set-ups, one simulating the sliding movement of the piston ring and the other the tilting movement at the end of the strokes. Wear during the running-in period was investigated, and the findings indicate that the period when this takes place is of short duration. In the long term, mild wear makes the surfaces smoother than they were when new, resulting in a very low wear coefficient. Significant levels of wear were measured on both contacting surfaces of the piston ring. In cases in which the flank exhibits more wear than the face, the wear on the flank can be reduced by proper design of the piston groove.</p><p>The second part of the project aimed to evaluate use of a textured surface for the cylinder bore counter surface and a coated surface for the piston ring. Three modelling experiments were performed to characterise the friction and wear properties under lean boundary lubrication conditions. Under such conditions, textured surfaces have the advantage of retaining more lubricant and supplying it over a longer time. Stable friction was also a distinctive feature of the textured surface. Use of a coating could also possibly reduce the amount of wear. Though a smooth surface, like a polished one, is hard to beat for a working texture, a coated surface is far ahead of a smooth uncoated one. Different manufactured and commonly used cylinder bore surfaces, including textured ones, were evaluated in the sliding movement test rig. That allowed favourable wear properties, such as lowest wear coefficient, to be determined with the use of a roller burnished surface.</p><p>A final part of the research involved simulating wear on the piston ring face throughout the entire service life of a hydraulic motor. This allowed us to determine the roles of surface roughness and coating in prolonging service life and achieving acceptable and secure piston ring operation. The model is simple and realistic, but still needs to be refined so as to correspond even better to reality.</p>
183

Low temperature Ag homoepitaxy an x-ray scattering study /

Elliott, William C. January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 80-84). Also available on the Internet.
184

Ice shape modeling enhancement for 2-D imcompressible local-flow Naiver-Stokes

Ogretim, Egemen Ol. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains viii, 56 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 28-29).
185

Direct numerical simulations of flow past quasi-random distributed roughness

Drews, Scott David, 1987- 11 June 2012 (has links)
low about a periodic array of quasi-random distributed roughness is examined using an immersed boundary spectral method. Verification of the code used in the simulations is obtained by comparing solutions to LDA wake survey and flow visualization experiments for a periodic array of cylinders at a roughness height-based Reynolds number of 202 and a diameter to spanwise spacing d/[lambda] of 1/3. Direct comparisons for the quasi-random distributed roughness are made with experiments at roughness height-based Reynolds numbers of 164, 227, and 301. Near-field details are investigated to explore their effects upon transition. Vortices formed as the flow moves over the roughness patch create three distinct velocity deficit regions which persist far downstream. Simulated streamwise velocity contours show good agreement with experiments. Additional geometries are simulated to determine the effects of individual components of the full roughness geometry on near-field flow structures. It was found that the tallest regions of roughness determine the overall wake profile. / text
186

Development of a hybrid DSMC/CFD method for hypersonic boundary layer flow over discrete surface roughness

Stephani, Kelly Ann 25 June 2012 (has links)
This work is focused on the development of a hybrid DSMC/CFD solver to examine hypersonic boundary layer flow over discrete surface roughness. The purpose of these investigations is to identify and quantify the non-equilibrium effects that influence the roughness-induced disturbance field and surface quantities of interest for engineering applications. To this end, a new hybrid framework is developed for high-fidelity hybrid solutions involving five-species air hypersonic boundary layer flow applications. A novel approach is developed for DSMC particle generation at a hybrid interface for gas mixtures with internal degrees of freedom. The appropriate velocity distribution function is formulated in the framework of Generalized Chapman-Enskog Theory, and includes contributions from species mass diffusion, shear stress and heat fluxes (both translational and internal) on the perturbation of the equilibrium distribution function. This formulation introduces new breakdown parameters for use in hybrid DSMC/CFD applications, and the new sampling algorithm allows for the generation of DSMC internal energies from the appropriate non-equilibrium distribution for the first time in the literature. The contribution of the internal heat fluxes to the overall perturbation is found to be of the same order as the stress tensor components, underscoring the importance of DSMC particle generation from the Generalized Chapman-Enskog distribution. A detailed comparison of the transport coefficients is made between the DSMC and CFD solvers, and a general best-fit approach is developed for the consistent treatment of diffusion, viscosity and thermal conductivity for a five-species air gas mixture. The DSMC VHS/VSS model parameters are calibrated through an iterative fitting approach using the Nelder-Mead Simplex Algorithm. The VSS model is found to provide the best fit (within 5% over the temperature range) to the transport models used in the CFD solver. The best-fit five-species air parameters are provided for general use by the DSMC community, either for hybrid applications or to provide improved consistency in general DSMC/CFD applications. This hybrid approach has been applied to examine hypersonic boundary layer flow over discrete surface roughness for a variety of roughness geometries and flow conditions. An (asymmetric) elongated hump geometry and (symmetric) diamond shaped roughness geometry are examined at high and low altitude conditions. Detailed comparisons among the hybrid solution and the CFD no-slip and slip wall solutions were made to examine the differences in surface heating, translational/vibrational non-equilibrium in the flow near the roughness, and the vortex structures in the wake through the Q-criterion. In all cases examined, the hybrid solution predicts a lower peak surface heating to the roughness compared to either CFD solution, and a higher peak surface heating in the wake due to vortex heating. The observed differences in vortex heating are a result of the predicted vortex structures which are highlighted using the Q-criterion. The disturbance field modeled by the hybrid solution organizes into a system of streamwise-oriented vortices which are slightly stronger and have a greater spanwise extent compared to the CFD solutions. As a general trend, it was observed that these differences in the predicted heating by the hybrid and CFD solutions increase with increasing Knudsen number. This trend is found for both peak heating values on the roughness and in the wake. / text
187

Effects of sediment supply and slope on channel topographic roughness and sediment transport

Aronovitz, Alexander Craig 20 July 2012 (has links)
We investigate evolution of mountain channel morphology and riverbed surface roughness by conducting laboratory experiments. The experimental flume is 4m long by 0.1m wide with a working length of 2.5m. We control initial sediment size distribution, flume slope, water discharge, and sediment feed rate. Measurements include topographic profiles, flow depth, surficial grain-size distribution, sediment transport rate, and sediment size distribution. Experiments begin with a gravel bed of a broad sediment size distribution, at two initial flume slopes: 8.2% and 12.4%. Discharge is held constant until transport rates and topographic changes indicate the system is at near steady state. Coarse sand is then fed into the channel at 1,000 g/min as a means to perturb the system. Sediment feed is held constant until the perturbed bed reach steady-state conditions. The feed is subsequently ceased and measurements continue until sediment transport rates and topography stabilize. These laboratory experiments provide first-hand observations of channel systems evolving after perturbations. Transport rates decay exponentially following perturbations and remain very low when the channel bed is stabilized. The introduction of coarse sand acts to smooth the channel bed by filling in topographic lows in the 8.2% sloped channel. At a 12.4% slope, increased mobility of sand allows steady state conditions to be met with little smoothing of the bed. The sand also increases the mobility of coarser sediment that was previously stable, likely due to local surface smoothing at grain scale. The increased fraction of surface sand cover maintains increased scouring and mobilization of coarser grains. These post-perturbation mechanisms are interpreted to be responsible for topographic adjustments as the system readjusts towards new steady-state conditions. Surface sorting and transporting distributions reflect high sand fractions well after perturbations have ceased. This suggests that brief pulses of fine sediment can increase coarse sediment mobility for prolonged periods. / text
188

The effect of grid scale on calibration of two-dimensional river models through the drag coefficient

Chisolm, Rachel Elizabeth 17 June 2011 (has links)
New survey technologies are able to provide detailed data on the form and topography of riverbeds. With this increased data resolution, the required computational time rather than data availability has become the limiting factor for river models. Detailed bathymetric data can be used to provide better empirical representation of drag and roughness at fine scales, allowing a priori selection of roughness using known physics rather than a posteriori calibration. However, we do not have sufficient guidance or understanding from the literature to represent known heterogeneities smaller than our practical grid scale. The problem is what to do with known subgrid-scale bathymetric features and roughness when our models must use a coarser computational grid. In this project, we simplify this complex problem to analyzing flow in a simple open channel with a single patch of relatively high roughness against an otherwise uniform background of low roughness. We model this open channel with a two-dimensional, depth-averaged river model. By running multiple simulations using different grid sizes we gain insight into how the relationship between the grid cell size and the patch size affects the appropriate physical selection of roughness parameter. As the primary focus, the present work proposes and investigates several methods for upscaling known fine-scale drag coefficient data to a coarser grid resolution for a model. For the tested conditions, it appears that a simple area-weighted linear average is simple to apply and creates a flow field very similar to the best results achieved by calibration. As a secondary issue, the present work examines grid-dependent behaviors when using model calibration. Although recalibration of models for different grid scales is a common practice among modelers, we could find relatively little documentation or analysis. In our work, we examine both single-cell calibration (i.e. changing roughness in only the cell containing the rough patch) and multiple-grid cell calibration involving neighbor cells. With either method, improving calibration required multiple model simulations and comparative analysis for each tested grid size and was inefficient compared to the upscaling approach. As expected, the calibration at a given grid size was always inappropriate for a different grid size. / text
189

Experimental Investigation of Wall Shear Stress Modifications due to Turbulent Flow over an Ablative Thermal Protection System Analog Surface

Helvey, Jacob 01 January 2015 (has links)
Modifications were made to the turbulent channel flow facility to allow for fully developed rough quasi-2D Poiseuille flow with flow injection through one surface and flow suction through the opposing surface. The combination of roughness and flow injection is designed to be analogous to the flow field over a thermal protection system which produces ablative pyrolysis gases during ablation. It was found that the additional momentum through the surface acted to reduce skin friction to a point below smooth-wall behavior. This effect was less significant with increasing Reynolds number. It was also found that the momentum injection modified the wake region of the flow.
190

Βιοϋλικά στα τεχνητά εμφυτεύματα και μετρήσεις ακριβείας των εμφυτευμάτων

Γεωργιλέ, Μαρία 08 February 2008 (has links)
Η αύξηση του προσδόκιμου διαβίωσης ενθαρρύνει την ευρύτερη χρήση τεχνητών εμφυτευμάτων για την αντικατάσταση ιστών και οργάνων ή την υποστήριξη των zωτικών λειτουργιών. Οι κυριότερες κατηγορίες υλικών που δύνανται να χρησιμοποιηθούν στα τεχνητά εμφυτεύματα είναι τα μέταλλα, τα κεραμικά, τα πολυμερή και τα σύνθετα υλικά και βρίσκουν εφαρμογή σε πολλούς τομείς της ιατρικής και της οδοντιατρικής. Στην παρούσα εργασία παρατίθενται οι κατηγορίες και οι ιδιότητες των υλικών, οι απαιτήσεις που πρέπει να πληρουν και οι εφαρμογές τους. Παρουσιάζονται, επίσης, μετρήσεις τραχύτητας επιφάνειας με τη μέθοδο afm σε κεφαλές από χάλυβα που μπορούν να χρησιμοποιηθούν στην ολική αρθροπλαστική ισχίου. / The use of medical implants in order to replace or maintain tissues and organs is now wider than ever before. The major categories of materials used in such applications in medicine and dentistry are metals, polymers, ceramics and composite materials. The aim of the present project is to present the properties, the requirements and the applications of biomaterials in medical implants. It is, also, measured with afm the roughness on surfaces of metallic heads suitable for hip joints replacement.

Page generated in 0.0343 seconds