• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] REDUÇÃO DE CENÁRIOS COM FORMULAÇÃO DE COBERTURA DE CONJUNTOS: UMA APLICAÇÃO NA INDÚSTRIA DE PETRÓLEO / [en] SCENARIO REDUCTION WITH SET COVERING FORMULATION: AN APPLICATION IN THE OIL INDUSTRY

ISABELLA FISCHER GUINDANI VIEIRA 20 September 2021 (has links)
[pt] As técnicas de agrupamentos aplicadas a um grande número de cenários de incerteza permitem a escolha de um conjunto reduzido, porém, representativo da população de cenários completa. Em outras palavras, selecionar uma amostra que contenha uma quantidade menor de elementos a ponto de reduzir suficientemente o volume total de dados e obter ganhos significativos de eficiência no processamento dos dados. Esta amostra deve, sobretudo, conseguir preservar as características do processo estocástico que o originou. Com este intuito, o presente trabalho propõe uma metodologia de seleção de cenários estocásticos utilizando o modelo clássico de Cobertura de Conjuntos, inspirada no método forward selection proposto por Heitsch e Romisch (2003). Aplicada na etapa de cálculo de demanda estocástica de ferramentas e serviços para construção de poços marítimos de exploração de petróleo, esta abordagem apresenta uma concepção de cenário diferente da usada pelos autores. O conjunto de cenários consiste em cronogramas de atividades gerados a partir da introdução de incertezas no planejamento de cada atividade, sendo eles estáticos, independentes e com múltiplos atributos. Uma análise de sensibilidade compara os resultados das demandas calculadas com os cenários selecionados pelo Problema de Cobertura de Conjuntos (PCC) e a demanda calculada com o conjunto universo de cenários. O PCC foi solucionado, nesta aplicação, em sua versão clássica da literatura a partir de um algoritmo exato e um heurístico. Os resultados apontam diferenças pouco representativas no resultado final das demandas calculadas com cenários reduzidos e com o total de cenários. A heurística, ainda que seja first solution, apresentou um resultado satisfatório em relação ao ganho de desempenho versus confiabilidade, e indica o potencial do método se aplicado em conjunto com algoritmos de metaheurística e busca local. / [en] Clustering techniques applied to a large number of scenarios under uncertainty allows the selection of a reduced, however, representative set of the complete set of scenarios. In other words, it allows to select a sample that contains a smaller amount of elements to the point of sufficiently reducing the total data volume and obtaining efficiency gains in data processing. The challenge is that the sample must, above all, be able to preserve the characteristics of the stochastic process that originated it. To this end, this study proposes a methodology for selecting stochastic scenarios using the classic Set Covering model, inspired by the forward selection method proposed by Heitsch and Romisch (2003). Applied in the calculating of stochastic demand for tools and services for the construction of offshore oil exploration wells, this approach presents a different scenario conception from the one used by the authors. The set of scenarios consists of activity schedules generated from the introduction of uncertainties in the planning of each activity, which are static, independent and with multiple attributes. A sensitivity analysis compares the results of the demands calculated with the scenarios selected by the Set Covering Problem (SCP) and the demand calculated with all the universe of scenarios. The SCP was solved, in this application, in its classic version using an exact algorithm and a heuristic algorithm. The results appoint na unexpressive loss in the final result of the demand calculated with reduced scenarios and with the complete set of scenarios. The simple first solution heuristic presented a satisfactory result in relation to the performance gain versus reliability, and indicates the potential of the method if solved with metaheuristic and local search algorithms.

Page generated in 0.0459 seconds